1
|
Leung K, Greathouse JA. Ab initio molecular dynamics free energy study of enhanced copper (II) dimerization on mineral surfaces. Commun Chem 2022; 5:76. [PMID: 36697693 PMCID: PMC9814296 DOI: 10.1038/s42004-022-00688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding the adsorption of isolated metal cations from water on to mineral surfaces is critical for toxic waste retention and cleanup in the environment. Heterogeneous nucleation of metal oxyhydroxides and other minerals on material surfaces is key to crystal growth and dissolution. The link connecting these two areas, namely cation dimerization and polymerization, is far less understood. In this work we apply ab initio molecular dynamics calculations to examine the coordination structure of hydroxide-bridged Cu(II) dimers, and the free energy changes associated with Cu(II) dimerization on silica surfaces. The dimer dissociation pathway involves sequential breaking of two Cu2+-OH- bonds, yielding three local minima in the free energy profiles associated with 0-2 OH- bridges between the metal cations, and requires the design of a (to our knowledge) novel reaction coordinate for the simulations. Cu(II) adsorbed on silica surfaces are found to exhibit stronger tendency towards dimerization than when residing in water. Cluster-plus-implicit-solvent methods yield incorrect trends if OH- hydration is not correctly depicted. The predicted free energy landscapes are consistent with fast equilibrium times (seconds) among adsorbed structures, and favor Cu2+ dimer formation on silica surfaces over monomer adsorption.
Collapse
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories, MS 1415, Albuquerque, NM, USA.
| | | |
Collapse
|
2
|
Wang F, Cheng J. Automated Workflow for Computation of Redox Potentials, Acidity Constants and Solvation Free Energies Accelerated by Machine Learning. J Chem Phys 2022; 157:024103. [DOI: 10.1063/5.0098330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fast evolution of modern society stimulates intense development of new materials with novel functionalities in energy and environmental applications. Due to rapid progress of computer science, computational design of materials with target properties has recently attracted lots of interests. Accurate and efficient calculation of fundamental thermodynamic properties, including redox potentials, acidity constants, and solvation free energies, is of great importance for selection and design of desirable materials. Free energy calculation based on ab initio molecular dynamics (AIMD) can predict these properties with high accuracy at complex environments, however being impeded by high computational costs. To address this issue, this work develops an automated scheme that combines iterative training of machine learning potentials (MLPs) and free energy calculation, and deomonstrates that these thermodynamic properties can be computed by ML accelerated MD with ab initio accuracy and much longer time scale at cheaper costs, improving poor statistics and convergence of numerical integration by AIMD. Our automated scheme lays the foundation for computational chemistry-assisted materials design.
Collapse
|
3
|
Lesnicki D, Wank V, Cyran JD, Backus EHG, Sulpizi M. Lower degree of dissociation of pyruvic acid at water surfaces than in bulk. Phys Chem Chem Phys 2022; 24:13510-13513. [PMID: 35640627 DOI: 10.1039/d2cp01293f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the acid/base behavior of environmentally relevant organic acids is of key relevance for accurate climate modelling. Here we investigate the effect of pH on the (de)protonation state of pyruvic acid at the air-water interface and in bulk by using the analytical techniques surface-specific vibrational sum frequency generation and attenuated total reflection spectroscopy. To provide a molecular interpretation of the observed behavior, simulations are carried out using a free energy perturbation approach in combination with electronic structure-based molecular dynamics. In both the experimental and theoretical results we observe that the protonated form of pyruvic acid is preferred at the air-water interface. The increased proton affinity is the result of the specific microsolvation at the interface.
Collapse
Affiliation(s)
- Dominika Lesnicki
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany.
| | - Veronika Wank
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria. .,University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Jenée D Cyran
- Department of Chemistry and Biochemistry, Baylor University, 76706 Waco, Texas, USA
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria. .,University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany. .,Department of Physics, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
4
|
Busch M, Ahlberg E, Ahlberg E, Laasonen K. How to Predict the p K a of Any Compound in Any Solvent. ACS OMEGA 2022; 7:17369-17383. [PMID: 35647457 PMCID: PMC9134414 DOI: 10.1021/acsomega.2c01393] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Acid-base properties of molecules in nonaqueous solvents are of critical importance for almost all areas of chemistry. Despite this very high relevance, our knowledge is still mostly limited to the pK a of rather few compounds in the most common solvents, and a simple yet truly general computational procedure to predict pK a's of any compound in any solvent is still missing. In this contribution, we describe such a procedure. Our method requires only the experimental pK a of a reference compound in water and a few standard quantum-chemical calculations. This method is tested through computing the proton solvation energy in 39 solvents and by comparing the pK a of 142 simple compounds in 12 solvents. Our computations indicate that the method to compute the proton solvation energy is robust with respect to the detailed computational setup and the construction of the solvation model. The unscaled pK a's computed using an implicit solvation model on the other hand differ significantly from the experimental data. These differences are partly associated with the poor quality of the experimental data and the well-known shortcomings of implicit solvation models. General linear scaling relationships to correct this error are suggested for protic and aprotic media. Using these relationships, the deviations between experiment and computations drop to a level comparable to that observed in water, which highlights the efficiency of our method.
Collapse
Affiliation(s)
- Michael Busch
- Department
of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Ernst Ahlberg
- Universal
Prediction AB, 42677 Gothenburg, Sweden
- Department
of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Elisabet Ahlberg
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemigården 4, 41296 Gothenburg, Sweden
| | - Kari Laasonen
- Department
of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
5
|
Abstract
Doping compounds can be considered a perturbation to the nuclear charges in a molecular Hamiltonian. Expansions of this perturbation in a Taylor series, i.e., quantum alchemy, have been used in the literature to assess millions of derivative compounds at once rather than enumerating them in costly quantum chemistry calculations. So far, it was unclear whether this series even converges for small molecules, whether it can be used for geometry relaxation, and how strong this perturbation may be to still obtain convergent numbers. This work provides numerical evidence that this expansion converges and recovers the self-consistent energy of Hartree-Fock calculations. The convergence radius of this expansion is quantified for dimer examples and systematically evaluated for different basis sets, allowing for estimates of the chemical space that can be covered by perturbing one reference calculation alone. Besides electronic energy, convergence is shown for density matrix elements, molecular orbital energies, and density profiles, even for large changes in electronic structure, e.g., transforming He3 into H6. Subsequently, mixed alchemical and spatial derivatives are used to relax H2 from the electronic structure of He alone, highlighting a path to spatially relaxed quantum alchemy. Finally, the underlying code that allows for arbitrarily accurate evaluation of restricted Hartree-Fock energies and arbitrary order derivatives is made available to support future method development.
Collapse
|
6
|
Shiery RC, Cooper KA, Cantu DC. Computational Prediction of All Lanthanide Aqua Ion Acidity Constants. Inorg Chem 2021; 60:10257-10266. [PMID: 34214391 DOI: 10.1021/acs.inorgchem.1c00662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protonation state of lanthanide-ligand complexes, or lanthanide-containing porous materials, with many Brønsted acid sites can change due to proton loss/gain reactions with water or other heteroatom-containing compounds. Consequently, variations in the protonation state of lanthanide-containing species affect their molecular structure and desired properties. Lanthanide(III) aqua ions undergo hydrolysis and form hydroxides; they are the best characterized lanthanide-containing species with multiple Brønsted acid sites. We employed constrained ab initio molecular dynamics simulations and electronic structure calculations to determine all acidity constants of the lanthanide(III) aqua ions solely from computation. The first, second, and third acidity constants of lanthanide(III) aqua ions were predicted, on average, within 1.2, 2.5, and 4.7 absolute pKa units from experiment, respectively. A table includes our predicted pKa values alongside most experimentally measured pKa values known to date. The approach presented is particularly suitable to determine the Brønsted acidity of lanthanide-containing systems with multiple acidic sites, including those whose measured acidity constants cannot be linked to specific acid sites.
Collapse
Affiliation(s)
- Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Kyle A Cooper
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
7
|
Zhang C, Liu L, Jia H. An Atomic-Scale Understanding of the Solution Chemistry of Antimony(V): Insights from First-Principles Molecular Dynamics Simulation. Inorg Chem 2020; 59:15741-15750. [PMID: 33040536 DOI: 10.1021/acs.inorgchem.0c02162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the structure, hydrolysis, and complexation of Sb(V) in aqueous solution has been elucidated by using first-principles molecular dynamics (FPMD) simulations. The results show that both antimonic acid and its deprotonated form have an octahedral configuration, with average Sb-OH2 and Sb-OH distances of 2.25 and 2.05 Å, respectively. The computed pKa of [Sb(OH)5(OH2)] is 1.8, while [Sb(OH)6]- has an extremely high pKa. Consequently, [Sb(OH)6]- is the most dominant species of Sb(V) under common environmental conditions. A stable aqueous complex can form between [Sb(OH)6]- and common cations, and an Sb-Al bidentate complex has the largest dissociation free energy, followed by a Sb-Mg bidentate complex, indicating that they have significantly higher stabilities. For Na+ and Ca2+, their respective monodentate and bidentate complexes have similar dissociation free energies, indicating very close possibilities. These findings provide a comprehensive understanding of the solution chemistry of Sb(V) from a quantitative and microscopic perspective.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Libin Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, People's Republic of China
| |
Collapse
|
8
|
Farafonov VS, Lebed AV, Mchedlov-Petrossyan NO. Computing p Ka Shifts Using Traditional Molecular Dynamics: Example of Acid-Base Indicator Dyes in Organized Solutions. J Chem Theory Comput 2020; 16:5852-5865. [PMID: 32786914 DOI: 10.1021/acs.jctc.0c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A compound's acidity constant (Ka) in a given medium determines its protonation state and, thus, its behavior and physicochemical properties. Therefore, it is among the key characteristics considered during the design of new compounds for the needs of advanced technology, medicine, and biological research, a notable example being pH sensors. The computational prediction of Ka for weak acids and bases in homogeneous solvents is presently rather well developed. However, it is not the case for more complex media, such as microheterogeneous solutions. The constant-pH molecular dynamics (MD) method is a notable contribution to the solution of the problem, but it is not commonly used. Here, we develop an approach for predicting Ka changes of weak small-molecule acids upon transfer from water to colloid solutions by means of traditional classical molecular dynamics. The approach is based on free energy (ΔG) computations and requires limited experiment data input during calibration. It was successfully tested on a series of pH-sensitive acid-base indicator dyes in micellar solutions of surfactants. The difficulty of finite-size effects affecting ΔG computation between states with different total charges is taken into account by evaluating relevant corrections; their impact on the results is discussed, and it is found non-negligible (0.1-0.4 pKa units). A marked bias is found in the ΔG values of acid deprotonation, as computed from MD, which is apparently caused by force-field issues. It is hypothesized to affect the constant-pH MD and reaction ensemble MD methods as well. Consequently, for these methods, a preliminary calibration is suggested.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- V. N. Karazin Kharkiv National University, 4 Svoboda Square, Kharkiv 61022, Ukraine
| | - Alexander V Lebed
- V. N. Karazin Kharkiv National University, 4 Svoboda Square, Kharkiv 61022, Ukraine
| | | |
Collapse
|
9
|
Jia M, Zhang C, Cox SJ, Sprik M, Cheng J. Computing Surface Acidity Constants of Proton Hopping Groups from Density Functional Theory-Based Molecular Dynamics: Application to the SnO 2(110)/H 2O Interface. J Chem Theory Comput 2020; 16:6520-6527. [PMID: 32794753 DOI: 10.1021/acs.jctc.0c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton transfer at metal oxide/water interfaces plays an important role in electrochemistry, geochemistry, and environmental science. The key thermodynamic quantity to characterize this process is the surface acidity constant. An ab initio method that combines density functional theory-based molecular dynamics (DFTMD) and free energy perturbation theory has been established for computing surface acidity constants. However, it involves a reversible proton insertion procedure in which frequent proton hopping, e.g., for strong bases and some oxide surfaces (e.g., SnO2), can cause instability issues in electronic structure calculation. In the original implementation, harmonic restraining potentials are imposed on all O-H bonds (denoted by the VrH scheme) to prevent proton hopping and thus may not be applicable for systems involving spontaneous proton hopping. In this work, we introduce an improved restraining scheme with a repulsive potential Vrep to compute the surface acidities of systems in which proton hopping is spontaneous and fast. In this Vrep scheme, a Buckingham-type repulsive potential Vrep is applied between the deprotonation site and all other protons in DFTMD simulations. We first verify the Vrep scheme by calculating the pKa values of H2O and aqueous HS- solution (i.e., strong conjugate bases) and then apply it to the SnO2(110)/H2O interface. It is found that the Vrep scheme leads to a prediction of the point of zero charge (PZC) of 4.6, which agrees well with experiment. The intrinsic individual pKa values of the terminal five-coordinated Sn site (Sn5cOH2) and bridge oxygen site (Sn2ObrH+) are 4.4 and 4.7, respectively, both being almost the same as the PZC. The similarity of the two pKa values indicates that dissociation of terminal water has almost zero free energy at this proton hopping interface (i.e., partial water dissociation), as expected from the acid-base equilibrium on SnO2.
Collapse
Affiliation(s)
- Mei Jia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Chao Zhang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, PO Box 538, Uppsala 75121, Sweden
| | - Stephen J Cox
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jun Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
10
|
Rossi K, Jurásková V, Wischert R, Garel L, Corminbœuf C, Ceriotti M. Simulating Solvation and Acidity in Complex Mixtures with First-Principles Accuracy: The Case of CH 3SO 3H and H 2O 2 in Phenol. J Chem Theory Comput 2020; 16:5139-5149. [PMID: 32567854 DOI: 10.1021/acs.jctc.0c00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges posed by the complexity of the problem, we resort to a set of data-driven methods and enhanced sampling algorithms. The synergistic application of these techniques makes the first-principle estimation of the chemical properties feasible without renouncing to the use of explicit solvation, involving extensive statistical sampling. Ensembles of neural network (NN) potentials are trained on a set of configurations carefully selected out of preliminary simulations performed at a low-cost density functional tight-binding (DFTB) level. The energy and forces of these configurations are then recomputed at the hybrid density functional theory (DFT) level and used to train the neural networks. The stability of the NN model is enhanced by using DFTB energetics as a baseline, but the efficiency of the direct NN (i.e., baseline-free) is exploited via a multiple-time-step integrator. The neural network potentials are combined with enhanced sampling techniques, such as replica exchange and metadynamics, and used to characterize the relevant protonated species and dominant noncovalent interactions in the mixture, also considering nuclear quantum effects.
Collapse
Affiliation(s)
- Kevin Rossi
- Laboratory of Computational Science and Modeling (COSMO), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Veronika Jurásková
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Raphael Wischert
- Eco-Efficient Products and Processes Laboratory, Solvay, RIC Shanghai, Shanghai 201108, China
| | - Laurent Garel
- Aroma Performance Laboratory, Solvay, RIC Lyon, 69190 Saint-Fons, France
| | - Clémence Corminbœuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling (COSMO), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Determination of pKa Values via ab initio Molecular Dynamics and its Application to Transition Metal-Based Water Oxidation Catalysts. INORGANICS 2019. [DOI: 10.3390/inorganics7060073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The p K a values are important for the in-depth elucidation of catalytic processes, the computational determination of which has been challenging. The first simulation protocols employing ab initio molecular dynamics simulations to calculate p K a values appeared almost two decades ago. Since then several slightly different methods have been proposed. We compare the performance of various evaluation methods in order to determine the most reliable protocol when it comes to simulate p K a values of transition metal-based complexes, such as the here investigated Ru-based water oxidation catalysts. The latter are of high interest for sustainable solar-light driven water splitting, and understanding of the underlying reaction mechanism is crucial for their further development.
Collapse
|
12
|
Gittus OR, von Rudorff GF, Rosso KM, Blumberger J. Acidity Constants of the Hematite-Liquid Water Interface from Ab Initio Molecular Dynamics. J Phys Chem Lett 2018; 9:5574-5582. [PMID: 30180586 DOI: 10.1021/acs.jpclett.8b01870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interface between transition metal oxides (TMO) and liquid water plays a crucial role in environmental chemistry, catalysis, and energy science. Yet, the mechanism and energetics of chemical transformations at solvated TMO surfaces is often unclear, largely because of the difficulty to characterize the active surface species experimentally. The hematite (α-Fe2O3)-liquid water interface is a case in point. Here we demonstrate that ab initio molecular dynamics is a viable tool for determining the protonation states of complex interfaces. The p Ka values of the oxygen-terminated (001) surface group of hematite, ≡OH, and half-layer terminated (012) surface groups, ≡2OH and ≡1OH2, are predicted to be (18.5 ± 0.3), (18.9 ± 0.6), and (10.3 ± 0.5) p Ka units, respectively. These are in good agreement with recent bond-valence theory based estimates, and suggest that the deprotonation of these surfaces require significantly more free energy input than previously thought.
Collapse
Affiliation(s)
- Oliver R Gittus
- Department of Chemistry , University College London , London WC1E 6BT , U.K
| | - Guido Falk von Rudorff
- Department of Physics and Astronomy and Thomas Young Centre , University College London , London WC1E 6BT , U.K
| | - Kevin M Rosso
- Physical Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre , University College London , London WC1E 6BT , U.K
| |
Collapse
|
13
|
Zhang C, Liu X, Tinnacher RM, Tournassat C. Mechanistic Understanding of Uranyl Ion Complexation on Montmorillonite Edges: A Combined First-Principles Molecular Dynamics-Surface Complexation Modeling Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8501-8509. [PMID: 29949352 DOI: 10.1021/acs.est.8b02504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematic first-principles molecular dynamics (FPMD) simulations were carried out to study the structures, free energies, and acidity constants of UO22+ surface complexes on montmorillonite in order to elucidate the surface complexation mechanisms of the uranyl ion (UO22+) on clay mineral edges at the atomic scale. Four representative complexing sites were investigated, that is, ≡Al(OH)2 and ≡AlOHSiO on the (010) surface and ≡AlOHOa and ≡SiOOa on the (110) surface. The results show that uranyl ions form bidentate complexes on these sites. All calculated binding free energies for these complexes are very similar. These bidentate complexes can be hydrolyzed, and their corresponding derived p Ka values (around 5.0 and 9.0 for p Ka1 and p Ka2, respectively) indicate that UO2(OH)+ and UO2(OH)2 surface groups are the dominant surface species in the environmental pH range. The OH groups of UO2(OH)2 surface complexes can act as complexing sites for subsequent metals. Additional simulations showed that such multinuclear adsorption is feasible and can be important at high pH. Furthermore, FPMD simulation results served as input parameters for an electrostatic thermodynamic surface complexation model (SCM) that adequately reproduced adsorption data from the literature. Overall, this study provides an improved understanding of UO22+ complexation on clay mineral edge surfaces.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210093 , P.R. China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210093 , P.R. China
| | - Ruth M Tinnacher
- Department of Chemistry & Biochemistry , California State University East Bay , Hayward , California 94542 , United States
- Energy Geosciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Christophe Tournassat
- Department of Chemistry & Biochemistry , California State University East Bay , Hayward , California 94542 , United States
- BRGM , Orléans 45060 , France
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327 , F-45071 , Orléans , France
- Energy Geosciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
14
|
Sulpizi M, Lützenkirchen J. Atypical titration curves for GaAl 12 Keggin-ions explained by a joint experimental and simulation approach. J Chem Phys 2018; 148:222836. [PMID: 29907055 DOI: 10.1063/1.5024201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although they have been widely used as models for oxide surfaces, the deprotonation behaviors of the Keggin-ions (MeAl127+) and typical oxide surfaces are very different. On Keggin-ions, the deprotonation occurs over a very narrow pH range at odds with the broad charging curve of larger oxide surfaces. Depending on the Me concentration, the deprotonation curve levels off sooner (high Me concentration) or later (for low Me concentration). The leveling off shows the onset of aggregation before which the Keggin-ions are present as individual units. We show that the atypical titration data previously observed for some GaAl12 solutions in comparison to the originally reported data can be explained by the presence of Ga2Al11 ions. The pKa value of aquo-groups bound to octahedral Ga was determined from ab initio molecular dynamics simulations relative to the pure GaAl12 ions. Using these results within a surface complexation model, the onset of deprotonation of the crude solution is surprisingly well predicted and the ratio between the different species is estimated to be in the proportion 20 (Ga2Al11) : 20 (Al13) : 60 (GaAl12).
Collapse
Affiliation(s)
- Marialore Sulpizi
- Physics Department, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Johannes Lützenkirchen
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
He M, Liu X, Cheng J, Lu X, Zhang C, Wang R. Uranyl Arsenate Complexes in Aqueous Solution: Insights from First-Principles Molecular Dynamics Simulations. Inorg Chem 2018; 57:5801-5809. [PMID: 29741893 DOI: 10.1021/acs.inorgchem.8b00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the structures and acidity constants (p Ka's) of uranyl arsenate complexes in solutions have been revealed by using the first principle molecular dynamics technique. The results show that uranyl and arsenate form stable complexes with the U/As ratios of 1:1 and 1:2, and the bidentate complexation between U and As is highly favored. Speciation-pH distributions are derived based on free energy and p Ka calculations, which indicate that for the 1:1 species, UO2(H2AsO4)(H2O)3+ is the major species at pH < 7, while UO2(HAsO4)(H2O)30 and UO2(AsO4)(H2O)3- dominate in acid-to-alkaline and extreme alkaline pH ranges. For the 1:2 species, UO2(H2AsO4)2(H2O)0 is dominant under acid-to-neutral pH conditions, while UO2(HAsO4)(H2AsO4)(H2O)-, UO2(HAsO4)(HAsO4)(H2O)2-, and UO2(AsO4)(HAsO4)(H2O)3- become the major forms in the pH range of 7.2-10.7, 10.7-12.1, and >12.1, respectively.
Collapse
Affiliation(s)
- Mengjia He
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,Department of Chemistry , University of Aberdeen , Aberdeen AB24 3UE , United Kingdom
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Chi Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Rucheng Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| |
Collapse
|
16
|
Schilling M, Luber S. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges. Front Chem 2018; 6:100. [PMID: 29721491 PMCID: PMC5915471 DOI: 10.3389/fchem.2018.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.
Collapse
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| |
Collapse
|
17
|
Sakti AW, Nishimura Y, Nakai H. Rigorous pKa Estimation of Amine Species Using Density-Functional Tight-Binding-Based Metadynamics Simulations. J Chem Theory Comput 2017; 14:351-356. [DOI: 10.1021/acs.jctc.7b00855] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aditya Wibawa Sakti
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Research
Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
18
|
Leung K, Criscenti LJ. Lead and selenite adsorption at water-goethite interfaces from first principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:365101. [PMID: 28685707 DOI: 10.1088/1361-648x/aa7e4f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II), [Formula: see text], and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe-Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe-O groups exhibit larger fluctuations in Pb-O distances. Pb(II)/[Formula: see text] contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the [Formula: see text] has a monodentate Se-O-Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/[Formula: see text] ion pairs to goethite adsorption sites.
Collapse
|
19
|
Microscopic dynamics of charge separation at the aqueous electrochemical interface. Proc Natl Acad Sci U S A 2017; 114:13374-13379. [PMID: 28698368 DOI: 10.1073/pnas.1700093114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na+I-, or classical ions, and the products of water autoionization, H3O+OH-, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.
Collapse
|
20
|
Bouzid A, Pasquarello A. Redox Levels through Constant Fermi-Level ab Initio Molecular Dynamics. J Chem Theory Comput 2017; 13:1769-1777. [DOI: 10.1021/acs.jctc.6b01232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Assil Bouzid
- Chaire de Simulation à
l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à
l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Hodel FH, Luber S. Dehydrogenation Free Energy of Co 2+(aq) from Density Functional Theory-Based Molecular Dynamics. J Chem Theory Comput 2017; 13:974-981. [PMID: 28225613 DOI: 10.1021/acs.jctc.6b01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electron and proton transfers are important steps occurring in chemical reactions. The often used approach of calculating the energy differences of those steps using methods based on geometry optimizations neglects the influence of dynamic effects. To further investigate this issue and inspired by research in water oxidation, we calculate in the present study the dehydrogenation free energy of aqueous Co2+, which is the free energy change associated with the first step of the water oxidation reaction mechanism of recently investigated model Co(II)-aqua catalysts. We employ a method based on a thermodynamic integration scheme with strong ties to Marcus theory to obtain free energy differences, solvent reorganization free energies, and dynamic structural information on the systems from density functional theory-based molecular dynamics. While this method is computationally orders of magnitude more expensive than a static approach, it potentially allows for predicting the validity of the approximation of neglecting dynamic effects.
Collapse
Affiliation(s)
- Florian H Hodel
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
22
|
He M, Liu X, Lu X, Zhang C, Wang R. Structures and Acidity Constants of Silver-Sulfide Complexes in Hydrothermal Fluids: A First-Principles Molecular Dynamics Study. J Phys Chem A 2016; 120:8435-8443. [PMID: 27709948 DOI: 10.1021/acs.jpca.6b08403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to quantify the speciation and structures of silver-sulfide complexes in aqueous solutions, we have carried out systematic first-principles molecular dynamics (FPMD) simulations at three temperatures (25, 200, and 300 °C). It is found that monosulfide (i.e., Ag(HS)) and disulfide species (i.e., Ag(HS)2-) are the major silver-sulfide species over a wide T-P range, while Ag(HS)32- can hold stably only at ambient temperatures, and Ag(HS)43- does not exist even at the ambient conditions. Ag(H2S)+ has a tetrahedral structure up to 300 °C (i.e., Ag(H2S)(H2O)3+). Ag(H2S)2+ remains 4-coordinated to 200 °C (i.e., Ag(H2S)2(H2O)2+), but it transforms to 3-coordinated at 300 °C (i.e., Ag(H2S)2(H2O)+). All of the other mono- and disulfide species (Ag(HS)(H2O)0, Ag(HS)(OH)-, Ag(HS)(H2S)0, Ag(HS)2-, and AgS(HS)2-) have 2-fold linear structures. For their solvation structures, the H2S ligands donate weak H-bonds to water O; the HS- ligands accept weak H-bonds from water H; the dangling S2- form strong H-bonds with H of water molecules, and the OH- ligands can form strong H-bonds as donors and weak H-bonds as acceptors. We further calculated the acidity constants (i.e., pKas) of Ag(H2S)+ and Ag(H2S)2+ complexes using FPMD based vertical energy gap method. Based on the calculated pKas, the mono- and disulfide species distributions versus pH have been derived. We found that for monosulfide species, Ag(HS)(H2O)0, is the major species in near neutral pH, while Ag(H2S)(H2O)3+ and Ag(HS)(OH)- exist in the acid and alkaline pH range at T ≤ 200 °C, respectively. At 300 °C, both Ag(HS)(OH)- and Ag(HS)(H2O)0 are dominant in the neutral pH range, and Ag(H2S)(H2O)2+ only exists in acidic solutions. For disulfide species, Ag(HS)2- is dominative in near neutral pH condition at the three temperatures; Ag(HS)(H2S)0 stays in mild acidic pH range only at 25 °C; AgS(HS)2- and Ag(H2S)2(H2O)2+ (Ag(H2S)2(H2O)+ at 300 °C) are trivial at the three conditions. The results of structures and acidity constants provide quantitative and microscopic basis for understanding the behavior of silver complexes in hydrothermal fluids.
Collapse
Affiliation(s)
- Mengjia He
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Chi Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| | - Rucheng Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210046, P. R. China
| |
Collapse
|
23
|
De Meyer T, Ensing B, Rogge SMJ, De Clerck K, Meijer EJ, Van Speybroeck V. Acidity Constant (pK a ) Calculation of Large Solvated Dye Molecules: Evaluation of Two Advanced Molecular Dynamics Methods. Chemphyschem 2016; 17:3447-3459. [PMID: 27570194 PMCID: PMC5129556 DOI: 10.1002/cphc.201600734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 11/14/2022]
Abstract
pH‐Sensitive dyes are increasingly applied on polymer substrates for the creation of novel sensor materials. Recently, these dye molecules were modified to form a covalent bond with the polymer host. This had a large influence on the pH‐sensitive properties, in particular on the acidity constant (pKa). Obtaining molecular control over the factors that influence the pKa value is mandatory for the future intelligent design of sensor materials. Herein, we show that advanced molecular dynamics (MD) methods have reached the level at which the pKa values of large solvated dye molecules can be predicted with high accuracy. Two MD methods were used in this work: steered or restrained MD and the insertion/deletion scheme. Both were first calibrated on a set of phenol derivatives and afterwards applied to the dye molecule bromothymol blue. Excellent agreement with experimental values was obtained, which opens perspectives for using these methods for designing dye molecules.
Collapse
Affiliation(s)
- Thierry De Meyer
- Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052, Zwijnaarde, Belgium.,Department of Textiles, Ghent University, Technologiepark 907, 9052, Zwijnaarde, Belgium
| | - Bernd Ensing
- Amsterdam Center for Multiscale Modeling and Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sven M J Rogge
- Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052, Zwijnaarde, Belgium
| | - Karen De Clerck
- Department of Textiles, Ghent University, Technologiepark 907, 9052, Zwijnaarde, Belgium
| | - Evert Jan Meijer
- Amsterdam Center for Multiscale Modeling and Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Ambrosio F, Miceli G, Pasquarello A. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals. J Chem Phys 2015; 143:244508. [DOI: 10.1063/1.4938189] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Francesco Ambrosio
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giacomo Miceli
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Cheng J, Liu X, VandeVondele J, Sprik M. Reductive Hydrogenation of the Aqueous Rutile TiO 2 (110) Surface. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Forster-Tonigold K, Groß A. Dispersion corrected RPBE studies of liquid water. J Chem Phys 2015; 141:064501. [PMID: 25134582 DOI: 10.1063/1.4892400] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The structure of liquid water has been addressed by ab initio molecular dynamics simulations based on density functional theory. Exchange-correlation effects have been described by the popular PBE and RPBE functionals within the generalized gradient approximation as these functionals also yield satisfactory results for metals which is important to model electrochemical interfaces from first principles. In addition, dispersive interactions are included by using dispersion-corrected schemes. It turns out that the dispersion-corrected RPBE functional reproduces liquid water properties quite well in contrast to the PBE functional. This is caused by the replacement of the over-estimated directional hydrogen-bonding in the PBE functional by non-directional dispersive interactions.
Collapse
Affiliation(s)
| | - Axel Groß
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, D-89069 Ulm, Germany
| |
Collapse
|
27
|
Cimas Á, Tielens F, Sulpizi M, Gaigeot MP, Costa D. The amorphous silica-liquid water interface studied by ab initio molecular dynamics (AIMD): local organization in global disorder. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:244106. [PMID: 24863440 DOI: 10.1088/0953-8984/26/24/244106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The structural organization of water at a model of amorphous silica-liquid water interface is investigated by ab initio molecular dynamics (AIMD) simulations at room temperature. The amorphous surface is constructed with isolated, H-bonded vicinal and geminal silanols. In the absence of water, the silanols have orientations that depend on the local surface topology (i.e. presence of concave and convex zones). However, in the presence of liquid water, only the strong inter-silanol H-bonds are maintained, whereas the weaker ones are replaced by H-bonds formed with interfacial water molecules. All silanols are found to act as H-bond donors to water. The vicinal silanols are simultaneously found to be H-bond acceptors from water. The geminal pairs are also characterized by the formation of water H-bonded rings, which could provide special pathways for proton transfer(s) at the interface. The first water layer above the surface is overall rather disordered, with three main domains of orientations of the water molecules. We discuss the similarities and differences in the structural organization of the interfacial water layer at the surface of the amorphous silica and at the surface of the crystalline (0 0 0 1) quartz surface.
Collapse
Affiliation(s)
- Álvaro Cimas
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE UMR CNRS 8587, Université d'Evry val d'Essonne, Blvd F Mitterrand, Bat. Maupertuis, 91025 Evry, France
| | | | | | | | | |
Collapse
|
28
|
Kheirjou S, Abedin A, Fattahi A, Hashemi MM. Excellent response of the DFT study to the calculations of accurate relative pKa value of different benzo-substituted quinuclidines. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Liu Y, Fan X, Jin Y, Hu X, Hu H. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach. J Chem Theory Comput 2013; 9:4257-65. [DOI: 10.1021/ct400406v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xiaoli Fan
- School of Materials Science
and Engineering, Northwestern Polytechnical University, Xi’an, Shannxi, 710072, China
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
| | - Yingdi Jin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xiangqian Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
| | - Hao Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
30
|
|
31
|
KHEIRJOU SOMAYYEH, MEHRPAJOUH SIMA, FATTAHI ALIREZA. DRASTIC INFLUENCE OF BORON ATOM ON THE ACIDITY OF ALCOHOL IN BOTH GAS PHASE AND SOLUTION PHASE, A DFT STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633612501039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the drastic influence of the boron atom on the acidity of alcohol has been considered. The calculated ΔH acid (320.9–338.1 kcal/mol) and pKa range of boron containing alcohol (-0.1–9.4) indicate that the boronation of alcohol leads to considerable enhancement of its acidity. For instance, we have obtained the ΔH acid values 338.1, 335.2 kcal/mol and the pKa values 4.12, 2.81 for BH2CH2OH , BF2CH2OH alcohols, respectively, which are much smaller than that of CH3OH (with ΔH acid = 374.9 kcal/mol and pKa = 15). The increase in the acidity of boronated alcohol can be related to the stabilization of alkoxy ion due to overlap of unoccupied orbital of boron atom with the electron pairs of negative oxygen. All gas phase computations were performed at MP2/6-311++G(d,p)//(B3LYP/6-31+G(d)) level. The primary results indicate that the presence of boron atom in an alcohol might make it as acidic as nitric acid. The geometry optimization of studied structures was performed with DFT computation and optimized structures were used to carry out natural bond orbital (NBO) analysis. NBO analysis revealed that the increase in the acidity of boron-containing alcohols is due to the charge transfer from the negative oxygen (in deprotonated structure) to the empty orbital of - BH2 and - BF2 . Quantum theory of atoms in molecules (QTAIM) was also applied to determine the nature of bonds formed in the deprotonated structure.
Collapse
Affiliation(s)
- SOMAYYEH KHEIRJOU
- Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516, Tehran, Iran
| | - SIMA MEHRPAJOUH
- Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516, Tehran, Iran
| | - ALIREZA FATTAHI
- Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516, Tehran, Iran
| |
Collapse
|
32
|
Leung K, Criscenti LJ. Predicting the acidity constant of a goethite hydroxyl group from first principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:124105. [PMID: 22395040 DOI: 10.1088/0953-8984/24/12/124105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Accurate predictions of the acid-base behavior of hydroxyl groups at mineral surfaces are critical for understanding the trapping of toxic and radioactive ions in soil samples. In this work, we apply ab initio molecular dynamics (AIMD) simulations and potential-of-mean-force techniques to calculate the pK(a) of a doubly protonated oxygen atom bonded to a single Fe atom (Fe(I)OH(2)) on the goethite (101) surface. Using formic acid as a reference system, pK(a) = 7.0 is predicted, suggesting that isolated, positively charged groups of this type are marginally stable at neutral pH. Similarities and differences between AIMD and the more empirical multi-site complexation methodology are highlighted, particularly with respect to the treatment of hydrogen bonding with water and proton sharing among surface hydroxyl groups. We also highlight the importance of an electronic structure method that can accurately predict transition metal ion properties for goethite pK(a) calculations.
Collapse
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories, MS 1415 and 0754, Albuquerque, NM 87185, USA.
| | | |
Collapse
|
33
|
Gaigeot MP, Sprik M, Sulpizi M. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:124106. [PMID: 22395098 DOI: 10.1088/0953-8984/24/12/124106] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, 'ice-like' and 'liquid-like' features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- LAMBE UMR8587, Université d'Evry val d'Essonne, Boulevard F Mitterrand, Bâtiment Maupertuis, F-91025 Evry, France.
| | | | | |
Collapse
|
34
|
Deglmann P, Schenk S. Thermodynamics of chemical reactions with COSMO-RS: the extreme case of charge separation or recombination. J Comput Chem 2012; 33:1304-20. [PMID: 22430261 DOI: 10.1002/jcc.22961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/09/2022]
Abstract
Many technically relevant chemical processes in the condensed phase involve as elementary reactive steps the formation of ions from neutral species or, as the opposite, recombination of ions. Such reactions that generate or annihilate charge defy the standard gas phase quantum chemical treatment, and also continuum solvation models are only partially able to account for the right amount of stabilization in solution. In this work, for such types of reaction, a solvation treatment involving the COSMO-RS method is assessed, which leads to improved results, i.e., errors of only around 10 kJ/mol for both protic and aprotic solvents. The examples discussed here comprise protolysis reactions and organo halide heterolysis, for both of which a comparison with reliable experimental data is possible. It is observed that for protolysis, the quality of results does not strongly depend on the quantum chemical method used for energy calculation. In contrast, in the case of heterolytic carbon-chlorine bond cleavage, clearly better results are obtained for higher correlated (coupled cluster) methods or the density functional M06-2X, which is well known for its accuracy if applied to organic chemistry. This hints at least that the right answer is obtained for the right reason and not due to a compensation of errors from gas phase thermodynamics with those from the solvation treatment. Problems encountered with certain critical solvents or upon decomposing Gibbs free energies into heats or entropies of reaction are found to relate mostly to the parameterization of the H-bonding term within COSMO-RS.
Collapse
Affiliation(s)
- Peter Deglmann
- BASF SE, Polymer Physics and Analytics, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany.
| | | |
Collapse
|
35
|
Costanzo F, Sulpizi M, Valle RGD, Sprik M. The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. J Chem Phys 2011; 134:244508. [DOI: 10.1063/1.3597603] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Salanne M, Simon C, Madden PA. Optical basicity scales in protic solvents: water, hydrogen fluoride, ammonia and their mixtures. Phys Chem Chem Phys 2011; 13:6305-8. [DOI: 10.1039/c0cp01639j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|