1
|
Ceccarelli M, Milenkovic S, Bodrenko IV. The Effect of Lipopolysaccharides on the Electrostatic Properties of Gram-Negative General Porins from Enterobacteriaceae. Chemphyschem 2024; 25:e202400147. [PMID: 38625051 DOI: 10.1002/cphc.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
We investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect on the microsecond time scale we sampled is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore. However, we noticed increased fluctuations of the polarization density and only minor changes on its average value.
Collapse
Affiliation(s)
- Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, IT
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, IT
| | - Igor V Bodrenko
- Istituto Nanoscienze, CNR, piazza San Silvestro 12, 56127, Pisa, Italy
- Lab NEST, Scuola Normale Superiore, piazza San Silvestro 12, 56127, Pisa, Italy
| |
Collapse
|
2
|
Transport mechanisms of SARS-CoV-E viroporin in calcium solutions: Lipid-dependent Anomalous Mole Fraction Effect and regulation of pore conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183590. [PMID: 33621516 PMCID: PMC7896491 DOI: 10.1016/j.bbamem.2021.183590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The envelope protein E of the SARS-CoV coronavirus is an archetype of viroporin. It is a small hydrophobic protein displaying ion channel activity that has proven highly relevant in virus-host interaction and virulence. Ion transport through E channel was shown to alter Ca2+ homeostasis in the cell and trigger inflammation processes. Here, we study transport properties of the E viroporin in mixed solutions of potassium and calcium chloride that contain a fixed total concentration (mole fraction experiments). The channel is reconstituted in planar membranes of different lipid compositions, including a lipid mixture that mimics the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane where the virus localizes within the cell. We find that the E ion conductance changes non-monotonically with the total ionic concentration displaying an Anomalous Mole Fraction Effect (AMFE) only when charged lipids are present in the membrane. We also observe that E channel insertion in ERGIC-mimic membranes – including lipid with intrinsic negative curvature – enhances ion permeation at physiological concentrations of pure CaCl2 or KCl solutions, with a preferential transport of Ca2+ in mixed KCl-CaCl2 solutions. Altogether, our findings demonstrate that the presence of calcium modulates the transport properties of the E channel by interacting preferentially with charged lipids through different mechanisms including direct Coulombic interactions and possibly inducing changes in membrane morphology.
Collapse
|
3
|
Ghai I, Pira A, Scorciapino MA, Bodrenko I, Benier L, Ceccarelli M, Winterhalter M, Wagner R. General Method to Determine the Flux of Charged Molecules through Nanopores Applied to β-Lactamase Inhibitors and OmpF. J Phys Chem Lett 2017; 8:1295-1301. [PMID: 28240914 DOI: 10.1021/acs.jpclett.7b00062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A major challenge in the discovery of the new antibiotics against Gram-negative bacteria is to achieve sufficiently fast permeation in order to avoid high doses causing toxic side effects. So far, suitable assays for quantifying the uptake of charged antibiotics into bacteria are lacking. We apply an electrophysiological zero-current assay using concentration gradients of β-lactamase inhibitors combined with single-channel conductance to quantify their flux rates through OmpF. Molecular dynamic simulations provide in addition details on the interactions between the nanopore wall and the charged solutes. In particular, the interaction barrier for three β-lactamase inhibitors is surprisingly as low as 3-5 kcal/mol and only slightly above the diffusion barrier of ions such as chloride. Within our macroscopic constant field model, we determine that at a zero-membrane potential a concentration gradient of 10 μM of avibactam, sulbactam, or tazobactam can create flux rates of roughly 620 molecules/s per OmpF trimer.
Collapse
Affiliation(s)
- Ishan Ghai
- Department of Life Sciences and Chemistry, Jacobs University Bremen , 28719 Bremen, Germany
| | - Alessandro Pira
- Department of Physics, University of Cagliari , Cagliari 09124, Italy
| | | | - Igor Bodrenko
- Department of Physics, University of Cagliari , Cagliari 09124, Italy
| | - Lorraine Benier
- Department of Life Sciences and Chemistry, Jacobs University Bremen , 28719 Bremen, Germany
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari , Cagliari 09124, Italy
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen , 28719 Bremen, Germany
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen , 28719 Bremen, Germany
| |
Collapse
|
4
|
Gutsmann T, Heimburg T, Keyser U, Mahendran KR, Winterhalter M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat Protoc 2014; 10:188-98. [DOI: 10.1038/nprot.2015.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Dhakshnamoorthy B, Ziervogel BK, Blachowicz L, Roux B. A structural study of ion permeation in OmpF porin from anomalous X-ray diffraction and molecular dynamics simulations. J Am Chem Soc 2014; 135:16561-8. [PMID: 24106986 DOI: 10.1021/ja407783a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OmpF, a multiionic porin from Escherichia coli, is a useful protypical model system for addressing general questions about electrostatic interactions in the confinement of an aqueous molecular pore. Here, favorable anion locations in the OmpF pore were mapped by anomalous X-ray scattering of Br(–) ions from four different crystal structures and compared with Mg(2+) sites and Rb(+) sites from a previous anomalous diffraction study to provide a complete picture of cation and anion transfer paths along the OmpF channel. By comparing structures with various crystallization conditions, we find that anions bind in discrete clusters along the entire length of the OmpF pore, whereas cations find conserved binding sites with the extracellular, surface-exposed loops. Results from molecular dynamics simulations are consistent with the experimental data and help highlight the critical residues that preferentially contact either cations or anions during permeation. Analysis of these results provides new insights into the molecular mechanisms that determine ion selectivity in OmpF porin.
Collapse
Affiliation(s)
- Balasundaresan Dhakshnamoorthy
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago Chicago, IL 60637, USA
| | - Brigitte K Ziervogel
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago Chicago, IL 60637, USA
| | - Lydia Blachowicz
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago Chicago, IL 60637, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago Chicago, IL 60637, USA
| |
Collapse
|
6
|
MATSUURA Y, YAMATO I, ANDO T, SUENAGA A. Ion Selectivity Mechanism of Escherichia Coli OmpF Porin: a Molecular Dynamics Simulation/ free Energy Calculation Study. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2014. [DOI: 10.2477/jccj.2014-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yasuhiro MATSUURA
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ichiro YAMATO
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi ANDO
- RIKEN, Laboratory for Biomolecular Function Simulation, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Atsushi SUENAGA
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
7
|
Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 2013; 11:371-84. [PMID: 23669886 DOI: 10.1038/nrmicro3028] [Citation(s) in RCA: 1371] [Impact Index Per Article: 124.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metals have been used as antimicrobial agents since antiquity, but throughout most of history their modes of action have remained unclear. Recent studies indicate that different metals cause discrete and distinct types of injuries to microbial cells as a result of oxidative stress, protein dysfunction or membrane damage. Here, we describe the chemical and toxicological principles that underlie the antimicrobial activity of metals and discuss the preferences of metal atoms for specific microbial targets. Interdisciplinary research is advancing not only our understanding of metal toxicity but also the design of metal-based compounds for use as antimicrobial agents and alternatives to antibiotics.
Collapse
|
8
|
Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity. Biochem Res Int 2012; 2012:245786. [PMID: 23008773 PMCID: PMC3449104 DOI: 10.1155/2012/245786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/17/2022] Open
Abstract
Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH). We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc.) that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.
Collapse
|
9
|
Aguilella VM, Queralt-Martín M, Aguilella-Arzo M, Alcaraz A. Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integr Biol (Camb) 2010; 3:159-72. [PMID: 21132209 DOI: 10.1039/c0ib00048e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion channels are hollow proteins that have evolved to exhibit discrimination between charged solutes. This property, known as ion selectivity is critical for several biological functions. By using the bacterial porin OmpF as a model system of wide protein channels, we demonstrate that significant insights can be gained when selectivity measurements are combined with electrodiffusion continuum models and simulations based on the atomic structure. A correct interpretation of the mechanisms ruling the many sources of channel discrimination is a first, indispensable step for the understanding of the controlled movement of ions into or out of cells characteristic of many physiological processes. We conclude that the scattered information gathered from several independent approaches should be appropriately merged to provide a unified and coherent picture of the channel selectivity.
Collapse
Affiliation(s)
- Vicente M Aguilella
- Dept. Physics, Lab. Molecular Biophysics, Universitat Jaume I, 12080 Castellón, Spain.
| | | | | | | |
Collapse
|