1
|
Ilg P. Simulating the flow of interacting ferrofluids with multiparticle collision dynamics. Phys Rev E 2022; 106:064605. [PMID: 36671097 DOI: 10.1103/physreve.106.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Ferrofluid flow is fascinating since its fluid properties can conveniently be manipulated by external magnetic fields. Novel applications in micro- and nanofluidics as well as in biomedicine have renewed the interest in the flow of colloidal magnetic nanoparticles with a focus on small-scale behavior. Traditional flow simulations of ferrofluids, however, often use simplified constitutive models and do not include fluctuations that are relevant at small scales. Here we address these challenges by proposing a hybrid scheme that combines the multiparticle collision dynamics method for modeling hydrodynamics with Brownian dynamics simulations of a reliable kinetic model describing the microstructure, magnetization dynamics, and resulting stresses. Since both multiparticle collision dynamics and Brownian dynamics are mesoscopic methods that naturally include fluctuations, this hybrid scheme presents a promising alternative to more traditional approaches, also because of the flexibility to model different geometries and modifying the constitutive model. The scheme was tested in several ways. Poiseuille flow was simulated for various model parameters and effective viscosities were determined from the resulting flow profiles. The effective, field-dependent viscosities are found to be in very good agreement with theoretical predictions. We also study Stokes' second flow problem for ferrofluids. For weak amplitudes and low frequencies of the oscillating plate, we find that the velocity profiles are well described by the result for Newtonian fluids at the corresponding, field-dependent viscosity. Furthermore, the time-dependent profiles of the nonequilibrum magnetization component are well approximated by their steady-state values in stationary shear when evaluated with the instantaneous local shear rate. Finally, we also apply our scheme to simulate ferrofluid shear flow over a rough surface. We find characteristic differences in the nonequilibrium magnetization components when the external field is oriented in flow and in a gradient direction.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading, RG6 6AX, United Kingdom
| |
Collapse
|
2
|
Structure and rheology of soft hybrid systems of magnetic nanoparticles in liquid-crystalline matrices: results from particle-resolved computer simulations. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Hybrid mixtures composed of magnetic nanoparticles (MNP) in liquid crystalline (LC) matrices are a fascinating class of soft materials with intriguing physical properties and a wide range of potential applications, e.g., as stimuli-responsive and adaptive materials. Already in the absence of an external stimulus, these systems can display various types of orientationally disordered and ordered phases, which are enriched by self-assembled structures formed by the MNPs. In the presence of external fields, one typically observes highly nonlinear macroscopic behavior. However, an understanding of the structure and dynamics of such systems on the particle level has, so far, remained elusive. In the present paper we review recent computer simulation studies targeting the structure, equilibrium dynamics and rheology of LC-MNP systems, in which the particle sizes of the two components are comparable. As a numerically tractable model system we consider mixtures of soft spherical or elongated particles with a permanent magnetic dipole moment and ellipsoidal non-magnetic particles interacting via a Gay-Berne potential. We address, first, equilibrium aspects such as structural organization and self-assembly (cluster formation) of the MNPs in dependence of the orientational state of the matrix, the role of the size ratio, the impact of an external magnetic field, and the translational and orientational diffusion of the two components. Second, we discuss the non-equilibrium dynamics of LC-MNP mixtures under planar shear flow, considering both, spherical and non-spherical MNPs. Our results contribute to a detailed understanding of these intriguing hybrid materials, and they may serve as a guide for future experiments.
Collapse
|
3
|
Ivanov AO, Zubarev A. Chain Formation and Phase Separation in Ferrofluids: The Influence on Viscous Properties. MATERIALS 2020; 13:ma13183956. [PMID: 32906703 PMCID: PMC7559013 DOI: 10.3390/ma13183956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Ferrofluids have attracted considerable interest from researchers and engineers due to their rich set of unique physical properties that are valuable for many industrial and biomedical applications. Many phenomena and features of ferrofluids' behavior are determined by internal structural transformations in the ensembles of particles, which occur due to the magnetic interaction between the particles. An applied magnetic field induces formations, such as linear chains and bulk columns, that become elongated along the field. In turn, these structures dramatically change the rheological and other physical properties of these fluids. A deep and clear understanding of the main features and laws of the transformations is necessary for the understanding and explanation of the macroscopic properties and behavior of ferrofluids. In this paper, we present an overview of experimental and theoretical works on the internal transformations in these systems, as well as on the effect of the internal structures on the rheological effects in the fluids.
Collapse
Affiliation(s)
- Alexey O. Ivanov
- Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Andrey Zubarev
- Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
- Correspondence: ; Tel.: +7-343-2160-765
| |
Collapse
|
4
|
Sreekumari A, Ilg P. Anisotropy of magnetoviscous effect in structure-forming ferrofluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012306. [PMID: 26274161 DOI: 10.1103/physreve.92.012306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 06/04/2023]
Abstract
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of microstructure formation.
Collapse
Affiliation(s)
- Aparna Sreekumari
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Patrick Ilg
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
- Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, UK
| |
Collapse
|
5
|
Peroukidis SD, Klapp SHL. Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:010501. [PMID: 26274107 DOI: 10.1103/physreve.92.010501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Indexed: 06/04/2023]
Abstract
Using Monte Carlo computer simulations we explore the self-assembly and ordering behavior of a hybrid, soft magnetic system consisting of small magnetic nanospheres in a liquid-crystalline (LC) matrix. Inspired by recent experiments with colloidal rod matrices, we focus on conditions where the sphere and rod diameters are comparable. Already in the absence of a magnetic field, the nematic ordering of the LC can stabilize the formation of magnetic chains along the nematic or smectic director, yielding a state with local (yet no macroscopic) magnetic order. The chains, in turn, increase the overall nematic order, reflecting the complex interplay of the structure formation of the two components. When increasing the sphere diameter, the spontaneous uniaxial ordering is replaced by biaxial lamellar morphologies characterized by alternating layers of rods and magnetic chains oriented perpendicular to the rod's director. These ordering scenarios at zero field suggest a complex response of the resulting hybrid to external stimuli, such as magnetic fields and shear forces.
Collapse
Affiliation(s)
- Stavros D Peroukidis
- Institute of theoretical Physics, Secretary EW 7-1, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute of theoretical Physics, Secretary EW 7-1, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|
6
|
Linke JM, Odenbach S. Anisotropy of the magnetoviscous effect in a ferrofluid with weakly interacting magnetite nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:176001. [PMID: 25837303 DOI: 10.1088/0953-8984/27/17/176001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The anisotropy of the magnetoviscous effect of a ferrofluid has been studied in a specially designed slit die viscometer, which allows three distinct orientations of the magnetic field with respect to the fluid flow. The corresponding Miesowicz viscosity coefficients were determined in dependence of the shear rate and the magnetic field intensity to gain a comprehensive magnetorheological characterization of the fluid. The particles in the fluid have a mean diameter of 13 nm corresponding to an interaction parameter of λ ≈ 1.3 for magnetite. Thus, the fluid can be expected to show a transition from non-interacting individual particles to microstructures with chain-like associated particles when the magnetic field intensity is increased and the shear rate is decreased. The observed field and shear dependent anisotropy of the magnetoviscous effect is explained coherently in terms of these microstructural changes in the fluid.
Collapse
Affiliation(s)
- J M Linke
- Technische Universität Dresden, Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Measuring and Automation Technology, 01062 Dresden, Germany
| | | |
Collapse
|
7
|
Borin DY, Zubarev AY, Chirikov DN, Odenbach S. Stress relaxation in a ferrofluid with clustered nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:406002. [PMID: 25229878 DOI: 10.1088/0953-8984/26/40/406002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The formation of structures in a ferrofluid by an applied magnetic field causes various changes in the rheological behaviour of the ferrofluid. A ferrofluid based on clustered iron nanoparticles was investigated. We experimentally and theoretically consider stress relaxation in the ferrofluid under the influence of a magnetic field, when the flow is suddenly interrupted. It is shown that the residual stress observed in the fluid after the relaxation is correlated with the measured and theoretically predicted magnetic field-induced yield stress. Furthermore, we have shown that the total macroscopic stress in the ferrofluid after the flow is interrupted is defined by the presence of both linear chains and dense, drop-like bulk aggregates. The proposed theoretical approach is consistent with the experimentally observed behaviour, despite a number of simplifications which have been made in the formulation of the model. Thus, the obtained results contribute a lot to the understanding of the complex, magnetic field-induced rheological properties of magnetic colloids near the yield stress point.
Collapse
Affiliation(s)
- Dmitry Yu Borin
- TU Dresden, Institute of Fluid Mechanics, 01062 Dresden, Germany
| | | | | | | |
Collapse
|
8
|
Sreekumari A, Ilg P. Slow relaxation in structure-forming ferrofluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042315. [PMID: 24229180 DOI: 10.1103/physreve.88.042315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Indexed: 06/02/2023]
Abstract
We study the behavior of colloidal magnetic fluids at low density for various dipolar interaction strengths by performing extensive Langevin dynamics simulations with model parameters that mimic cobalt-based ferrofluids used in experiments. Our study mainly focuses on the structural and dynamical properties of dipolar fluids and the influence of structural changes on their dynamics. Drastic changes from chainlike to networklike structures in the absence of an external magnetic field are observed. This crossover plays an important role in the slowing down of dynamics that is reflected in various dynamical properties including the tracer diffusion and the viscosity and also in the structural relaxation.
Collapse
Affiliation(s)
- Aparna Sreekumari
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
9
|
Patel R. Ferrohydrodynamic evaluation of rotational viscosity and relaxation in certain ferrofluids. Phys Rev E 2012; 86:016324. [PMID: 23005542 DOI: 10.1103/physreve.86.016324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 04/03/2012] [Indexed: 11/07/2022]
Abstract
A significant effect of aggregation dynamics for aqueous ferrofluid (AF) and kerosene based ferrofluid (KF) using magnetic field dependent capillary viscosity and magneto-optical relaxation measurements is studied. For better comparison parameters of AF and KF are kept similar. Ferrohydrodynamic equations of chain forming ferrofluids, dilute ferrofluids, and Brownian dynamic simulations are compared. It is observed that the rotational viscosity of AF is larger than that of KF due to field induced aggregates in it and strong dipolar interactions. It is also observed that at Ωτ ~ 0.04 both AF and KF viscosity becomes almost similar, suggesting similar behavior at that shear rate. The magneto-optical relaxation in AF exhibits nonexponential behavior when relaxed from higher magnetic field and follows irreversible thermodynamics, whereas for KF the relaxation is exponential and follows the effective field method. This discrepancy is explained based on aggregation dynamics of magnetic particles. Results are well described by the corresponding theoretical models.
Collapse
Affiliation(s)
- Rajesh Patel
- Department of Physics, Sardar Vallabhbhai Patel Campus, Bhavnagar University, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|