1
|
Yao Y, Zhao G, Guo X, Xiong P, Xu Z, Zhang L, Chen C, Xu C, Wu TS, Soo YL, Cui Z, Li MMJ, Zhu Y. Facet-Dependent Surface Restructuring on Nickel (Oxy)hydroxides: A Self-Activation Process for Enhanced Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:15219-15229. [PMID: 38775440 DOI: 10.1021/jacs.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to β-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals β-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate β-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared β-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.
Collapse
Affiliation(s)
- Yunduo Yao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Guangming Zhao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Changsheng Chen
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Chao Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Zhang S, Zhao X, Qiu Y, Xiong Y, Meng G, Chen W, Liu Z, Zhang J. Electron Deficient Ir-O Bonds Promote Heterogeneous Ir-Catalyzed Anti-Markovnikov Hydroboration of Alkenes under Mild Neat Conditions. NANO LETTERS 2024; 24:5165-5173. [PMID: 38630980 DOI: 10.1021/acs.nanolett.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Yajun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
3
|
Qiu J, Nguyen TH, Lee YJ, Kim S, Kim S, Kim SJ, Song MT, Huang WJ, Chen XB, Yang IS. Strong oxygen-content dependence of the magnetic excitations in antiferromagnetic NiO nanoparticles: A Raman probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122700. [PMID: 37060656 DOI: 10.1016/j.saa.2023.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
Nanostructured antiferromagnetic (AFM) NiO has attracted much attention from both the fundamental and applied perspectives. Understanding the two-magnon (2 M) is of great significance in NiO applications such as spin valves and next-generation magnetic random access memories (MRAM). We investigated the phonon modes and antiferromagnetically ordered states of NiO nanoparticles prepared by empirically controlled measurements. An intensity enhancement of the 2 M mode was observed by Raman spectroscopy as the NiO nanoparticles were vacuum annealed at 650 ℃. The increased 2 M peak intensity in NiO nanoparticles is explained by the local symmetry conversions from NiO5 to NiO6 configurations due to the oxygen redistribution during the vacuum annealing. The change of the splitting of anisotropic transverse optical (TO) phonon with different oxygen contents was also revealed by the Raman spectroscopy. We have shown that the changes in the oxygen environment underlie both the change in the 2 M intensity and the splitting of TO phonon in the NiO nanoparticles. Our work offers an efficient avenue to strengthen the AFM ordering and emphasizes the effect of vacuum annealing of the NiO nanoparticles, opening the interesting possibility of individual parameter control in practical applications.
Collapse
Affiliation(s)
- Jin Qiu
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Thi Huyen Nguyen
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Young Jin Lee
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Seung Kim
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Sujin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Sung-Jin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Meng-Ting Song
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wen-Juan Huang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
| | - In-Sang Yang
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
4
|
High-Performance Room-Temperature Conductometric Gas Sensors: Materials and Strategies. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemiresistive sensors have gained increasing interest in recent years due to the necessity of low-cost, effective, high-performance gas sensors to detect volatile organic compounds (VOC) and other harmful pollutants. While most of the gas sensing technologies rely on the use of high operation temperatures, which increase usage cost and decrease efficiency due to high power consumption, a particular subset of gas sensors can operate at room temperature (RT). Current approaches are aimed at the development of high-sensitivity and multiple-selectivity room-temperature sensors, where substantial research efforts have been conducted. However, fewer studies presents the specific mechanism of action on why those particular materials can work at room temperature and how to both enhance and optimize their RT performance. Herein, we present strategies to achieve RT gas sensing for various materials, such as metals and metal oxides (MOs), as well as some of the most promising candidates, such as polymers and hybrid composites. Finally, the future promising outlook on this technology is discussed.
Collapse
|
5
|
Bhattacharjee N, Mahalingam K, Fedorko A, Lauter V, Matzelle M, Singh B, Grutter A, Will-Cole A, Page M, McConney M, Markiewicz R, Bansil A, Heiman D, Sun NX. Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108790. [PMID: 35132680 DOI: 10.1002/adma.202108790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2 Te3 /Ni80 Fe20 because of diffusion of Ni in Bi2 Te3 (Ni-Bi2 Te3 ). The AFM property of the Ni-Bi2 Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2 Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2 Te4 in the Ni-Bi2 Te3 interface layer. The Neél temperature of the Ni-Bi2 Te3 layer is ≈63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.
Collapse
Affiliation(s)
- Nirjhar Bhattacharjee
- Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA
| | - Krishnamurthy Mahalingam
- Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA
| | - Adrian Fedorko
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Valeria Lauter
- Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Boston, TN, 37831, USA
| | - Matthew Matzelle
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Bahadur Singh
- Tata Institute of Fundamental Research, Department of Condensed Matter Physics and Materials Science, Mumbai, 400005, India
| | - Alexander Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Alexandria Will-Cole
- Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA
| | - Michael Page
- Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA
| | - Michael McConney
- Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA
| | - Robert Markiewicz
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Arun Bansil
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
| | - Don Heiman
- Northeastern University, Department of Physics, Boston, MA, 02115, USA
- Plasma Science and Fusion Center, MIT, Cambridge, MA, 02139, USA
| | - Nian Xiang Sun
- Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Chen J, Mao W, Ge B, Wang J, Ke X, Wang V, Wang Y, Döbeli M, Geng W, Matsuzaki H, Shi J, Jiang Y. Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO 3. Nat Commun 2019; 10:694. [PMID: 30741947 PMCID: PMC6370778 DOI: 10.1038/s41467-019-08613-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
The discovery of hydrogen-induced electronic phase transitions in strongly correlated materials such as rare-earth nickelates has opened up a new paradigm in regulating materials’ properties for both fundamental study and technological applications. However, the microscopic understanding of how protons and electrons behave in the phase transition is lacking, mainly due to the difficulty in the characterization of the hydrogen doping level. Here, we demonstrate the quantification and trajectory of hydrogen in strain-regulated SmNiO3 by using nuclear reaction analysis. Introducing 2.4% of elastic strain in SmNiO3 reduces the incorporated hydrogen concentration from ~1021 cm−3 to ~1020 cm−3. Unexpectedly, despite a lower hydrogen concentration, a more significant modification in resistivity is observed for tensile-strained SmNiO3, substantially different from the previous understanding. We argue that this transition is explained by an intermediate metastable state occurring in the transient diffusion process of hydrogen, despite the absence of hydrogen at the post-transition stage. Proton doping can induce metal-insulator transitions in rare-earth nickelates, demonstrating the complex interplay between dopants and electronic degrees of freedom. Chen et al. use results on strained films to argue that local proton-induced lattice distortions strongly influence the transition.
Collapse
Affiliation(s)
- Jikun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, China.
| | - Wei Mao
- School of Engineering, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Binghui Ge
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinyou Ke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vei Wang
- Department of Applied Physics, Xi'an University of Technology, 710054, Xi'an, China
| | - Yiping Wang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, NY, 12180, USA
| | - Max Döbeli
- Laboratory of Ion Beam Physics, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Wentong Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Hiroyuki Matsuzaki
- School of Engineering, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, NY, 12180, USA.
| | - Yong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, China.
| |
Collapse
|
7
|
Weatherup RS, Wu CH, Escudero C, Pérez-Dieste V, Salmeron MB. Environment-Dependent Radiation Damage in Atmospheric Pressure X-ray Spectroscopy. J Phys Chem B 2017; 122:737-744. [DOI: 10.1021/acs.jpcb.7b06397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert S. Weatherup
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Cheng Hao Wu
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Carlos Escudero
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Virginia Pérez-Dieste
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Miquel B. Salmeron
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Papaefthimiou V, Niakolas DK, Paloukis F, Teschner D, Knop-Gericke A, Haevecker M, Zafeiratos S. Operando observation of nickel/ceria electrode surfaces during intermediate temperature steam electrolysis. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ge X, Du Y, Li B, Hor TSA, Sindoro M, Zong Y, Zhang H, Liu Z. Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02493] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoming Ge
- Institute
of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Republic of Singapore 138634
| | - Yonghua Du
- Institute
of Chemical and Engineering Science (ICES), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong
Island, Republic of Singapore 627833
| | - Bing Li
- Institute
of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Republic of Singapore 138634
| | - T. S. Andy Hor
- Institute
of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Republic of Singapore 138634
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Melinda Sindoro
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Republic of Singapore 639798
| | - Yun Zong
- Institute
of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Republic of Singapore 138634
| | - Hua Zhang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Republic of Singapore 639798
| | - Zhaolin Liu
- Institute
of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Republic of Singapore 138634
| |
Collapse
|
10
|
Engineered Mott ground state in a LaTiO(3+δ)/LaNiO3 heterostructure. Nat Commun 2016; 7:10418. [PMID: 26791402 PMCID: PMC4735946 DOI: 10.1038/ncomms10418] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/09/2015] [Indexed: 11/08/2022] Open
Abstract
In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO3 have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging from interfacial charge transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of a correlated metal LaNiO3 and a doped Mott insulator LaTiO3+δ, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge transfer from Ti to Ni sites, giving rise to an insulating ground state with orbital polarization and eg orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states. Interfaces between two dissimilar transition metal oxides can exhibit emergent strongly correlated electronic and magnetic states due to charge transfer and electronic reconfiguration. Here, the authors synthesize and investigate an exotic Mott ground state in LaTiO3+δ/LaNiO3 heterostructures.
Collapse
|