1
|
Yousuf SMEH, Wang Y, Ramachandran S, Koptur-Palenchar J, Tarantini C, Xiang L, McGill S, Smirnov D, Santos EJG, Feng PXL, Zhang XX. Mechanical Resonant Sensing of Spin Texture Dynamics in a 2D Antiferromagnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420168. [PMID: 40304113 DOI: 10.1002/adma.202420168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/16/2025] [Indexed: 05/02/2025]
Abstract
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10-9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.
Collapse
Affiliation(s)
- S M Enamul Hoque Yousuf
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yunong Wang
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Shreyas Ramachandran
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | | | - Chiara Tarantini
- National High Magnetic Field Laboratory, Tallahassee, FL, 32312, USA
| | - Li Xiang
- National High Magnetic Field Laboratory, Tallahassee, FL, 32312, USA
| | - Stephen McGill
- National High Magnetic Field Laboratory, Tallahassee, FL, 32312, USA
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, FL, 32312, USA
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Donostia International Physics Centre (DIPC), Donostia-San Sebastian, 20018, Spain
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Philip X-L Feng
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Xiao-Xiao Zhang
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Yap CK, Zhang L, Du A, Tang C. Regulation of transition temperature and magnetic anisotropy in 2D multiferroic monolayer through electron donating and withdrawing groups adsorption. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:195805. [PMID: 40164104 DOI: 10.1088/1361-648x/adc77b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
The discovery of two-dimensional (2D) magnetic materials ushers in the engineering of future magnetoelectric nanodevices and spintronics, however, it is limited by the lack of a material platform with simultaneously large magnetic anisotropy and high transition temperature. Using a recently synthesized CrSe2monolayer as a demonstration, the impact on magnetism and electronics is studied via first-principles calculations by functionalizing the monolayer with electron-donating and electron-withdrawing groups namely NH2and NO2. The magnetic ground state of the CrSe2changes from the stripe antiferromagnetic to the ferromagnetic state after functionalization. The transition temperature of CrSe2-NO2and CrSe2-NH2enhances to 105 and 70 K, respectively, due to the expansion of the CrSe2superlattice. Besides, the magnetic anisotropy energy (MAE) of the CrSe2-NO2increases to 1.12 meV/Cr along the in-plane direction due to the electron-withdrawing effect of the NO2group. Oppositely, the electron-donating effect will decrease the MAE. Moreover, robust out-of-plane electric polarization is induced into the functionalized CrSe2monolayer, relying on the semiconducting nature and asymmetric geometry along thezdirection. These findings demonstrate the critical role of functional groups in regulating the magnetic and electronic properties of 2D multiferroic structures, providing a general approach for controllable 2D spintronic applications.
Collapse
Affiliation(s)
- Chee Kian Yap
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aijun Du
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Cheng Tang
- Materials Genome Institute, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
3
|
Xu G, Wang T. Determining the Magnetic Status of Active Sites on Nanocatalysts. J Phys Chem Lett 2025; 16:1447-1452. [PMID: 39888717 DOI: 10.1021/acs.jpclett.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Identifying the atomic structure and chemical composition of active sites on nanocatalysts has been a long pursuit in heterogeneous catalysis. Yet, determining the magnetic structure of a well-defined active site is even more challenging. However, explicit morphology and reaction temperature have not been considered in identifying the magnetic behaviors of the nanocatalysts, especially in theoretical studies. Herein, we determined the magnetic status of nanoscale catalysts at finite temperatures by using atomistic spin models. The size dependence of the Curie point and the magnetic premelting have been discussed, indicating that the magnetic properties over a localized active center can greatly differ from the bulk. Therefore, the magnetic phase transitions and its concomitant magneto-catalytic effect can be induced at a considerably low temperature. Our analysis demonstrated that an 8 nm cobalt-based core-shell nanoparticle can achieve the optimal magnetization with Sabatier optimal activity for ammonia synthesis at 523 K, which is in accord with the reaction condition of the Haber-Bosch process. We believe our findings elucidate the importance of determining the localized magnetic configuration for active sites. Furthermore, including this unexcavated dimension in the dynamical simulations of the catalytic process can provide us with a more complete and comprehensive understanding of the reaction mechanism under working conditions.
Collapse
Affiliation(s)
- Gaomou Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University; Zhejiang Baima Lake Laboratory, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
4
|
Noah A, Fridman N, Zur Y, Markman M, King YK, Klang M, Rama‐Eiroa R, Solanki H, Ashby MLR, Levin T, Herrera E, Huber ME, Gazit S, Santos EJG, Suderow H, Steinberg H, Millo O, Anahory Y. Field-Induced Antiferromagnetic Correlations in a Nanopatterned Van der Waals Ferromagnet: A Potential Artificial Spin Ice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409240. [PMID: 39648691 PMCID: PMC11791941 DOI: 10.1002/advs.202409240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Indexed: 12/10/2024]
Abstract
Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe3 vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice. By using a combination of SQUID-on-tip microscopy, focused ion beam lithography, and atomistic spin dynamic simulations, it is shown that a square array of CGT island as small as 150 × 150 × 60 nm3 have tunable dipole-dipole interactions, which can be precisely controlled by their lateral spacing. There is a crossover between non-interacting islands and significant inter-island anticorrelation depending on how they are spatially distributed allowing the creation of complex magnetic patterns not observable at the isolated flakes. These findings suggest that the cross-talk between the nano-patterned magnets can be explored in the generation of even more complex spin configurations where exotic interactions may be manipulated in an unprecedented way.
Collapse
Affiliation(s)
- Avia Noah
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
- Faculty of EngineeringRuppin Academic CenterEmek‐HeferMonash40250Israel
| | - Nofar Fridman
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Yishay Zur
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Maya Markman
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
| | - Yotam Katz King
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Maya Klang
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
| | - Ricardo Rama‐Eiroa
- Institute for Condensed Matter Physics and Complex SystemsSchool of Physics and AstronomyUniversity of EdinburghEdinburghEH93FDUK
| | - Harshvardhan Solanki
- Institute for Condensed Matter Physics and Complex SystemsSchool of Physics and AstronomyUniversity of EdinburghEdinburghEH93FDUK
| | - Michael L. Reichenberg Ashby
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Imperial College London, Blackett LaboratoryLondonSW7 2AZUK
| | - Tamar Levin
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
| | - Edwin Herrera
- Laboratorio de Bajas TemperaturasUnidad Asociada UAM/CSICDepartamento de Física de la Materia CondensadaInstituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Martin E. Huber
- Departments of Physics and Electrical EngineeringUniversity of Colorado DenverDenverCO80217USA
| | - Snir Gazit
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- The Fritz Haber Research Center for Molecular DynamicsThe Hebrew University of JerusalemJerusalem91904Israel
| | - Elton J. G. Santos
- Institute for Condensed Matter Physics and Complex SystemsSchool of Physics and AstronomyUniversity of EdinburghEdinburghEH93FDUK
- Donostia International Physics Center (DIPC)Donostia‐San SebastiánBasque Country20018Spain
- Higgs Centre for Theoretical PhysicsUniversity of EdinburghEdinburghEH93FDUK
| | - Hermann Suderow
- Laboratorio de Bajas TemperaturasUnidad Asociada UAM/CSICDepartamento de Física de la Materia CondensadaInstituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Hadar Steinberg
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Oded Millo
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Yonathan Anahory
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| |
Collapse
|
5
|
Chen C, Zheng C, Hu S, Chen HH, Zhang J, Liu Y. Abnormal chirality in antiferromagnetic resonance modes of van der Waals 2D magnets. Sci Rep 2025; 15:2777. [PMID: 39843644 PMCID: PMC11754476 DOI: 10.1038/s41598-025-86218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Two-dimensional van der Waals (2D vdW) materials have attracted widespread research interest due to their unique physical properties and potential application prospects. In this study, an atomistic-level dynamical simulation method is employed to investigate the chirality of antiferromagnetic resonance modes in CrI3 bilayer. Beyond the typical observations of a linear increase in high-frequency resonance mode and a linear decrease in low-frequency resonance mode, we have identified a distinct magnetization precession chirality in the CrI3 bilayer at low magnetic fields: Spins in different layers exhibit opposite precession chirality. This unusual chirality phenomenon is attributed to the weak interlayer coupling inherent in vdW materials, which can be adjusted by tuning their interlayer coupling and perpendicular magnetic anisotropy. These findings provide valuable insights into the intrinsic antiferromagnetic resonance characteristics of atomically thin vdW materials and their potential implications for the development of spintronic devices.
Collapse
Affiliation(s)
- Chao Chen
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Cuixiu Zheng
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shanshan Hu
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hao-Hsuan Chen
- Shanghai Key Laboratory for Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai, 200092, China
| | - Jianwei Zhang
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Yaowen Liu
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Key Laboratory for Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Pantasri W, Meo A, Chureemart P, Suntives A, Pituso K, Chantrell RW, Chureemart J. Model of advanced recording system for application in heat-assisted magnetic recording. Sci Rep 2025; 15:2776. [PMID: 39843938 PMCID: PMC11754591 DOI: 10.1038/s41598-025-87044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Heat assisted magnetic recording (HAMR) technology is considered a solution to overcome the limitations of perpendicular magnetic recording and enable higher storage densities. To improve and understand the performance of magnetic writers in HAMR technology, it is crucial to possess a comprehensive understanding of both the magnetic field generated during the writing process and the thermal effects induced by the laser. In this work, we have developed a micromagnetic HAMR model with atomistic parameterization. To demonstrate the applicability of the developed model, it is employed to investigate the Write Current Assisted Percentage (WCAP) measurement which is characterized by the difference in laser current needed to erase a narrow data track with and without assistance of the magnetic field generated by the writer. This value allows us to subsequently consider the strength of the magnetic field from the writer, which is difficult to evaluate experimentally. We study the effect of crucial factors such as the laser current, the frequency of the writing field and the grain size distribution of the recording media on the WCAP. The results reveal that, under a high applied field, a correspondingly elevated WCAP is generated. This observation suggests that the track undergoes erasure to approximately half of its amplitude, achieved through the utilization of a low peak temperature. The comparison between simulation and experimental data demonstrates excellent agreement and acts as a validation of the underlying principle of WCAP. Additionally, we explore theoretically the impact of the writer frequency, and the results suggest that lower frequencies give rise to an increase in WCAP. This implies that lower frequencies allow for a reduction in temperature required to erase the track. The technique is valuable in evaluating and contrasting the magnetic behavior of various write pole configurations, examining the frequency responses of different designs, and comparing different media.
Collapse
Affiliation(s)
- Wasan Pantasri
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Andrea Meo
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand
- Department of Electrical and Information Engineering, Politecnico of Bari, 70125, Bari, Italy
| | | | | | | | - Roy W Chantrell
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Jessada Chureemart
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand.
| |
Collapse
|
7
|
Fan Y, Cao G, Jiang S, Åkerman J, Weissenrieder J. Spatiotemporal observation of surface plasmon polariton mediated ultrafast demagnetization. Nat Commun 2025; 16:873. [PMID: 39833190 PMCID: PMC11756397 DOI: 10.1038/s41467-025-56158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings. We discover correlated spatial distributions of demagnetization amplitude and surface plasmon polariton intensity, the latter characterized by photo-induced near-field electron microscopy. Furthermore, by comparing the results with patterned ultrafast demagnetization dynamics without surface plasmon polariton interaction, we show that the demagnetization is not only enhanced but also exhibits a spatiotemporal modulation near a spatial discontinuity (plasmonic hot spot). Our findings shed light on the intricate interplay between surface plasmons and spins, offer insights into the optimized control of optical excitation of magnetic materials and push the boundaries of ultrafast manipulation of magnetism.
Collapse
Affiliation(s)
- Yuzhu Fan
- School of Engineering Sciences, KTH Royal Institute of Technology, Applied Physics, AlbaNova, SE-106 91, Stockholm, Sweden
| | - Gaolong Cao
- School of Engineering Sciences, KTH Royal Institute of Technology, Applied Physics, AlbaNova, SE-106 91, Stockholm, Sweden
| | - Sheng Jiang
- School of Microelectronics, South China University of Technology, 510641, Guangzhou, China
| | - Johan Åkerman
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Weissenrieder
- School of Engineering Sciences, KTH Royal Institute of Technology, Applied Physics, AlbaNova, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Liu J, Zhang X, Lu G. Moiré magnetism and moiré excitons in twisted CrSBr bilayers. Proc Natl Acad Sci U S A 2025; 122:e2413326121. [PMID: 39739786 PMCID: PMC11725868 DOI: 10.1073/pnas.2413326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Moiré excitons and moiré magnetism are essential to semiconducting van der Waals magnets. In this work, we perform a comprehensive first-principles study to elucidate the interplay of electronic excitation and magnetism in twisted magnetic CrSBr bilayers. We predict a twist-induced quantum phase transition for interlayer magnetic coupling and estimate the critical twist angle below which moiré magnetism with mixed ferromagnetic and antiferromagnetic domains could emerge. Localized one-dimensional moiré excitons are stable if the interlayer coupling is ferromagnetic and become unstable if the coupling turns to antiferromagnetic. Exciton energy modulation by magnons is estimated and dependence of exciton oscillator strength on the twist angle and interlayer coupling is analyzed. An orthogonally twisted bilayer is revealed to exhibit layer-dependent, anisotropic optical transitions. Electric field is shown to induce net magnetic moments in moiré excitons, endowing them with exceedingly long lifetimes. Our work lays the foundation for using magnetic moiré bilayers in spintronic, optoelectronic, and quantum information applications.
Collapse
Affiliation(s)
- Junyi Liu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA91330-8268
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA91330-8268
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA91330-8268
| |
Collapse
|
9
|
Son KH, Oh S, Lee J, Yun S, Shin Y, Yan S, Jang C, Lee HS, Lei H, Park SY, Ryu H. Persistent ferromagnetic ground state in pristine and Ni-doped Fe 3GaTe 2 flakes. NANO CONVERGENCE 2024; 11:55. [PMID: 39666207 PMCID: PMC11638437 DOI: 10.1186/s40580-024-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe3GaTe2 stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe3GaTe2 and (Fe1 - xNix)3GaTe2 (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe3GaTe2 exhibit persistent ferromagnetism, with only a minor decrease in TC as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe3GaTe2 in van der Waals magnetic heterostructures and advanced spintronic technologies.
Collapse
Affiliation(s)
- Ki-Hoon Son
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, 17104, South Korea
| | - Sehoon Oh
- Department of Physics and Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul, 06978, South Korea
- Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, South Korea
| | - Junho Lee
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Sobin Yun
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Yunseo Shin
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, 17104, South Korea
| | - Shaohua Yan
- School of Physics and Beiing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Renmin University of China, Beijing, 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Chaun Jang
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hong-Sub Lee
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, 17104, South Korea.
| | - Hechang Lei
- School of Physics and Beiing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Renmin University of China, Beijing, 100872, China.
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China.
| | - Se Young Park
- Department of Physics and Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul, 06978, South Korea.
- Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, South Korea.
| | - Hyejin Ryu
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| |
Collapse
|
10
|
Ccahuana D, De Biasi E. Exploring magnetic disorder in inverted core-shell nanoparticles: the role of surface anisotropy and core/shell coupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:055301. [PMID: 39476492 DOI: 10.1088/1361-648x/ad8d2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
In this work, we have studied the effect of internal coupling in magnetic nanoparticles with inverted core-shell structure (antiferromagnet-ferrimagnet) and also magnetic surface anisotropy, performing Monte Carlo simulations based on a micromagnetic model applied in the limit of lattice size equal to the crystalline unit cell. In the treatment, different internal regions of the particle were labeled in order to analyze the magnetic order and the degree of coupling between them. The results obtained are in agreement with experimental observations in CoO/CoFe2O4and ZnO/CoFe2O systems, which we have taken as reference. It is observed that the surface anisotropy decreases the coercive field and the blocking temperature of the system. However, the core/shell coupling improves these properties and magnetically hardens the system. Our study shows that a significant magnetic stress is generated in the system, leading to magnetic disorder in the spins of the particle interface. On the other hand, in cases of high surface anisotropy, within a range of interfacial exchange values, a clear magnetic disorder is observed in the shell, which leads to anomalous behavior because the magnetization reversal process is no longer coherent.
Collapse
Affiliation(s)
- Dámaso Ccahuana
- Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| | - Emilio De Biasi
- Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
11
|
Stagraczyński S, Baláž P, Jafari M, Barnaś J, Dyrdał A. Magnetic ordering and dynamics in monolayers and bilayers of chromium trihalides: atomistic simulations approach. Sci Rep 2024; 14:25552. [PMID: 39462040 PMCID: PMC11513983 DOI: 10.1038/s41598-024-75501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
We analyze magnetic properties of monolayers and bilayers of chromium iodide, [Formula: see text], in two different stacking configurations: AA and rhombohedral ones. Our main focus is on the corresponding Curie temperatures, hysteresis curves, equilibrium spin structures, and spin wave excitations. To obtain all these magnetic characteristic, we employ the atomistic spin dynamics and Monte Carlo simulation techniques. The model Hamiltonian includes isotropic exchange coupling, magnetic anisotropy, and Dzyaloshinskii-Moriya interaction. As the latter interaction is relatively weak in pristine [Formula: see text], we consider a more general case, when the Dzyaloshinskii-Moriya interaction is enhanced externally (e.g. due to gate voltage, mechanical strain, or proximity effects). An important issue of the analysis is the correlation between hysteresis curves and spin configurations in the system, as well as formation of the skyrmion textures.
Collapse
Affiliation(s)
- S Stagraczyński
- Faculty of Physics and Astronomy, Adam Mickiewicz University in Poznań, ul, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - P Baláž
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Prague 8, Czech Republic
| | - M Jafari
- Faculty of Physics and Astronomy, Adam Mickiewicz University in Poznań, ul, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - J Barnaś
- Faculty of Physics and Astronomy, Adam Mickiewicz University in Poznań, ul, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - A Dyrdał
- Faculty of Physics and Astronomy, Adam Mickiewicz University in Poznań, ul, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
12
|
Saenphum N, Khamtawi R, Chureemart J, Chantrell RW, Chureemart P. Temperature dependence of spin transport behavior in Heusler alloy CPP-GMR. Sci Rep 2024; 14:23925. [PMID: 39397047 PMCID: PMC11471841 DOI: 10.1038/s41598-024-74996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
In this study, we investigate the effect of temperature on the performance of a read sensor by utilizing an atomistic model coupled with a spin transport model. Specifically, we study the temperature dependence of spin transport behavior and MR outputs in aCo 2 FeAl 0.5 Si 0.5 (CFAS)(5nm)/Cu(5nm)/CFAS(5nm) trilayer with diffusive interfaces. Initially, the two-channel model of spin-dependent resistivity is used to calculate the temperature dependence of spin transport parameters which serves as essential input for the spin accumulation model. Our findings demonstrate that as the temperature increases, the spin transport parameters and magnetic properties decrease due to the influence of thermal fluctuation. At a critical temperature, where the ferromagnet transitions to a paramagnetic state, we observe zero spin polarization. Furthermore, at elevated temperatures, the spin accumulation deviates from the equilibrium value, leading to a reduction in the magnitude of spin current and spin transport parameters due to thermal effects. As a consequence, the MR ratio decreases from 65% to 20% with increasing temperature from 0 to 400 K. Our results are consistent with previous experimental measurements. This study allows to deeply understand the physical mechanism in the reader stack which can significantly benefit reader design.
Collapse
Affiliation(s)
- Nattaya Saenphum
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand
- Seagate Technology, Teparuk, Samutprakarn, 10270, Thailand
| | - Rungtawan Khamtawi
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Jessada Chureemart
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Roy W Chantrell
- Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand.
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom.
| | | |
Collapse
|
13
|
Dos Santos G, Urbassek HM, Bringa EM. Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations. Sci Rep 2024; 14:22012. [PMID: 39317768 PMCID: PMC11422501 DOI: 10.1038/s41598-024-73129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, T c , similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. T c is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, T c decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of T c is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining T c . Extrapolating the inverse of the magnetization as function of temperature near T c gives a lower T c than the maximum of the susceptibility.
Collapse
Affiliation(s)
- Gonzalo Dos Santos
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, 5500, Mendoza, Argentina
| | - Herbert M Urbassek
- Physics Department, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.
| | - Eduardo M Bringa
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, 5500, Mendoza, Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
14
|
Gao Z, Ma F, Zhu Z, Zhang Q, Liu Y, Jiao Y, Du A. Ultrahigh Néel Temperature Antiferromagnetism and Ultrafast Laser-Controlled Demagnetization in a Dirac Nodal Line MoB 3 Monolayer. NANO LETTERS 2024; 24:10964-10971. [PMID: 39171642 PMCID: PMC11378283 DOI: 10.1021/acs.nanolett.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (TN), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB3 monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB3 monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level. It demonstrates a high magnetic anisotropy energy of 865 μeV/Mo and an ultrahigh TN of 1050 K, one of the highest recorded for 2D AFMs. Importantly, we reveal the ultrafast demagnetization of AFM MoB3 under laser irradiation, which induces a rapid transition from a DNL semimetallic state to a metallic state on the time scale of hundreds of femtoseconds. This work presents an effective method for designing advanced spintronics using 2D high-temperature DNL semimetals and opens up a new idea for ultrafast modulation of magnetization in topological semimetals.
Collapse
Affiliation(s)
- Zhen Gao
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Fengxian Ma
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ziming Zhu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081 Changsha, China
| | - Qin Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081 Changsha, China
| | - Ying Liu
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Yalong Jiao
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, 050024 Shijiazhuang, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4000 Queensland, Australia
| |
Collapse
|
15
|
Huang L, Cao Y, Qiu H, Bai H, Liao L, Chen C, Han L, Pan F, Jin B, Song C. Terahertz oscillation driven by optical spin-orbit torque. Nat Commun 2024; 15:7227. [PMID: 39174538 PMCID: PMC11341728 DOI: 10.1038/s41467-024-51440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Antiferromagnets are promising for nano-scale oscillator in a wide frequency range from gigahertz up to terahertz. Experimentally realizing antiferromagnetic moment oscillation via spin-orbit torque, however, remains elusive. Here, we demonstrate that the optical spin-orbit torque induced by circularly polarized laser can be used to drive free decaying oscillations with a frequency of 2 THz in metallic antiferromagnetic Mn2Au thin films. Due to the local inversion symmetry breaking of Mn2Au, ultrafast a.c. current is generated via spin-to-charge conversion, which can be detected through free-space terahertz emission. Both antiferromagnetic moments switching experiments and dynamics analyses unravel the antiferromagnetic moments, driven by optical spin-orbit torque, deviate from its equilibrium position, and oscillate back in 5 ps once optical spin-orbit torque is removed. Besides the fundamental significance, our finding opens a new route towards low-dissipation and controllable antiferromagnet-based spin-torque oscillators.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yanzhang Cao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Hongsong Qiu
- State Key Laboratory of Spintronics Devices and Technologies, School of Integrated Circuits, Nanjing University, Suzhou, China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Liyang Liao
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Japan
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Biaobing Jin
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Mehta R, Rana B, Saha S. Magnetization dynamics in quasiperiodic magnonic crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:443003. [PMID: 38959908 DOI: 10.1088/1361-648x/ad5ee8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Quasiperiodic magnonic crystals, in contrast to their periodic counterparts, lack strict periodicity which gives rise to complex and localised spin wave spectra characterized by numerous band gaps and fractal features. Despite their intrinsic structural complexity, quasiperiodic nature of these magnonic crystals enables better tunability of spin wave spectra over their periodic counterparts and therefore holds promise for the applications in reprogrammable magnonic devices. In this article, we provide an overview of magnetization reversal and precessional magnetization dynamics studied so far in various quasiperiodic magnonic crystals, illustrating how their quasiperiodic nature gives rise to tailored band structure, enabling unparalleled control over spin waves. The review is concluded by highlighting the possible potential applications of these quasiperiodic magnonic crystals, exploring potential avenues for future exploration followed by a brief summary.
Collapse
Affiliation(s)
- Riya Mehta
- Department of Physics, Ashoka University, Sonipat, Haryana 131029, India
| | - Bivas Rana
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Susmita Saha
- Department of Physics, Ashoka University, Sonipat, Haryana 131029, India
| |
Collapse
|
17
|
Hübner W, Lefkidis G, Zhang GP. All-optical spin switching on an ultrafast time scale. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:403001. [PMID: 38917839 DOI: 10.1088/1361-648x/ad5bae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Information technology revolution demands bigger and faster magnetic storage. All-optical spin switching (AOS) may offer a solution, where an ultrafast laser pulse alone can switch magnetization from one direction to another faithfully within 1-10 ps, free of a magnetic field. There are two types of switching: One is the helicity-dependent all-optical spin switching (HD-AOS) and the other the helicity-independent all-optical spin switching (HID-AOS). In a few alloys, one single laser pulse, with sufficient fluence, can switch spin, but the majority of magnetic materials requires multiple pulses. Both material-specific and laser-specific properties strongly affect the switching process. However, the underlying mechanism is still under debate. As the entire research field moves toward applications, it is very appropriate to review what has been achieved in the last decade. This review covers some of the major experimental and theoretical developments within the last decade, and serves as an introduction to the uninitiated reader in this field and a summary for the seasoned researchers.
Collapse
Affiliation(s)
- Wolfgang Hübner
- Department of Physics, Rheinland-Pfälzische Technische Universität, Kaiserslautern-Landau, 67653 Kaiserslautern, Germany
| | - Georgios Lefkidis
- Department of Physics, Rheinland-Pfälzische Technische Universität, Kaiserslautern-Landau, 67653 Kaiserslautern, Germany
| | - G P Zhang
- Department of Physics, Indiana State University, Terre Haute, IN 47809, United States of America
| |
Collapse
|
18
|
Ruiz A, Esteras DL, López-Alcalá D, Baldoví JJ. On the Origin of the Above-Room-Temperature Magnetism in the 2D van der Waals Ferromagnet Fe 3GaTe 2. NANO LETTERS 2024; 24:7886-7894. [PMID: 38842368 PMCID: PMC11229069 DOI: 10.1021/acs.nanolett.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
2D magnetic materials have attracted growing interest driven by their unique properties and potential applications. However, the scarcity of systems exhibiting magnetism at room temperature has limited their practical implementation into functional devices. Here we focus on the van der Waals ferromagnet Fe3GaTe2, which exhibits above-room-temperature magnetism (Tc = 350-380 K) and strong perpendicular anisotropy. Through first-principles calculations, we examine the magnetic properties of Fe3GaTe2 and compare them with those of Fe3GeTe2. Our calculations unveil the microscopic mechanisms governing their magnetic behavior, emphasizing the pivotal role of ferromagnetic in-plane couplings in the stabilization of the elevated Tc in Fe3GaTe2. Additionally, we predict the stability, substantial perpendicular anisotropy, and high Tc of the single-layer Fe3GaTe2. We also demonstrate the potential of strain engineering and electrostatic doping to modulate its magnetic properties. Our results incentivize the isolation of the monolayer and pave the way for the future optimization of Fe3GaTe2 in magnetic and spintronic nanodevices.
Collapse
Affiliation(s)
- Alberto
M. Ruiz
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Dorye L. Esteras
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Diego López-Alcalá
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - José J. Baldoví
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| |
Collapse
|
19
|
Ruiz AM, Rivero-Carracedo G, Rybakov A, Dey S, Baldoví JJ. Towards molecular controlled magnonics. NANOSCALE ADVANCES 2024; 6:3320-3328. [PMID: 38933864 PMCID: PMC11197403 DOI: 10.1039/d4na00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Magnonics is an emerging field broadly recognized as a paradigm shift for information technologies based on the use of spin waves. However, the low flexibility and variety of the existing systems still hamper their applications. Herein, we propose an unprecedented chemical approach to magnonics based on the creation of hybrid molecular/2D heterostructures. We analyse the modulation of the magnetic properties, magnon dispersion and spin dynamics of a single layer of CrSBr after the deposition of sublimable organic molecules via first-principles calculations. Our results predict a modulation of magnetic exchange, a shift in the magnon frequencies and an enhancement of their group velocities up to ∼7%. Interestingly, we find a linear correlation between these effects and the donor character of the molecules. This will pave the way for the design of a new class of magnonic materials that can be selectively tailored by a chemical approach.
Collapse
Affiliation(s)
- Alberto M Ruiz
- Instituto de Ciencia Molecular, Universitat de València 46980 Paterna Spain
| | | | - Andrey Rybakov
- Instituto de Ciencia Molecular, Universitat de València 46980 Paterna Spain
| | - Sourav Dey
- Instituto de Ciencia Molecular, Universitat de València 46980 Paterna Spain
| | - José J Baldoví
- Instituto de Ciencia Molecular, Universitat de València 46980 Paterna Spain
| |
Collapse
|
20
|
Qi J, Zhao Y, Zhang Y, Yang G, Huang H, Lyu H, Shao B, Zhang J, Li J, Zhu T, Yu G, Wei H, Zhou S, Shen B, Wang S. Full electrical manipulation of perpendicular exchange bias in ultrathin antiferromagnetic film with epitaxial strain. Nat Commun 2024; 15:4734. [PMID: 38830907 PMCID: PMC11148026 DOI: 10.1038/s41467-024-49214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Achieving effective manipulation of perpendicular exchange bias effect remains an intricate endeavor, yet it stands a significance for the evolution of ultra-high capacity and energy-efficient magnetic memory and logic devices. A persistent impediment to its practical applications is the reliance on external magnetic fields during the current-induced switching of exchange bias in perpendicularly magnetized structures. This study elucidates the achievement of a full electrical manipulation of the perpendicular exchange bias in the multilayers with an ultrathin antiferromagnetic layer. Owing to the anisotropic epitaxial strain in the 2-nm-thick IrMn3 layer, the considerable exchange bias effect is clearly achieved at room temperature. Concomitantly, a specific global uncompensated magnetization manifests in the IrMn3 layer, facilitating the switching of the irreversible portion of the uncompensated magnetization. Consequently, the perpendicular exchange bias can be manipulated by only applying pulsed current, notably independent of the presence of any external magnetic fields.
Collapse
Affiliation(s)
- Jie Qi
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Yunchi Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yi Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guang Yang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - He Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haochang Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bokai Shao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyan Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jialiang Li
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Tao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongxiang Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiming Zhou
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Baogen Shen
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
21
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
22
|
Cui Q, Zhu Y, Jiang J, Cui P, Yang H, Chang K, Wang K. Anatomy of Hidden Dzyaloshinskii-Moriya Interactions and Topological Spin Textures in Centrosymmetric Crystals. NANO LETTERS 2024. [PMID: 38739551 DOI: 10.1021/acs.nanolett.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Dzyaloshinskii-Moriya interaction (DMI) is understood to be forbidden by the symmetry of centrosymmetric systems, thus restricting the candidate types for investigating many correlated physical phenomena. Here, we report the hidden DMI existing in centrosymmetric magnets driven by the local inversion symmetry breaking of specific spin sublattices. The opposite DMI spatially localized on the inverse spin sublattice favors the separated spin spiral with opposite chirality. Furthermore, we elucidate that hidden DMI widely exists in many potential candidates, from the first-principles calculations on the mature crystal database. Interestingly, novel topological spin configurations, such as the anti-chirality-locked merons and antiferromagnetic-ferromagnetic meron chains, are stabilized as a consequence of hidden DMI. Our understanding enables the effective control of DMI by symmetry operations at the atomic level and enlarges the range of currently useful magnets for topological magnetism.
Collapse
Affiliation(s)
- Qirui Cui
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yingmei Zhu
- Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311305, China
| | - Jiawei Jiang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Ping Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Yongjiang Laboratory, Ningbo 315202, China
| | - Hongxin Yang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Kai Chang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Cao L, Ruta S, Khamtawi R, Chureemart P, Zhai Y, Evans RFL, Chantrell RW. Simulation study of the Gilbert damping in Ni 80Fe 20/Nd bilayers: comparison with experiments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:305901. [PMID: 38354418 DOI: 10.1088/1361-648x/ad294e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
We present an experimental and computational investigation the Neodymium thickness dependence of the effective damping constant (αeff) inNi80Fe20/Neodymium (Py/Nd) bilayers. The computational results show that the magnetic damping is strongly dependent on the thickness of Nd, which is in agreement with experimental data. Self consistent solutions of the spin accumulation model and the local magnetisation were used in the simulations. It was not possible to obtain agreement with experiment under the assumption of an enhanced damping in a single Py monolayer. Instead, it was found that the enhanced damping due to spin pumping needed to be spread across two monolayers of Py. This is suggested to arise from interface mixing. Subsequently, the temperature dependence of the effective damping was investigated. It is found that, with increasing temperature, the influence of thermally-induced spin fluctuations on magnetic damping becomes stronger with increasing Nd thickness.
Collapse
Affiliation(s)
- Lulu Cao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
- Department of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Sergiu Ruta
- Sheffield Hallam University-Collegiate Campus, Sheffield S10 2BP, United Kingdom
| | - Rungtawan Khamtawi
- Department of Physics, Mahasarakham University, Mahasarakham 44150, Thailand
| | | | - Ya Zhai
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Richard F L Evans
- Department of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Roy W Chantrell
- Department of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
24
|
Guo Z, Wang J, Malinowski G, Zhang B, Zhang W, Wang H, Lyu C, Peng Y, Vallobra P, Xu Y, Xu Y, Jenkins S, Chantrell RW, Evans RFL, Mangin S, Zhao W, Hehn M. Single-Shot Laser-Induced Switching of an Exchange Biased Antiferromagnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311643. [PMID: 38407359 DOI: 10.1002/adma.202311643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Ultrafast manipulation of magnetic order has challenged the understanding of the fundamental and dynamic properties of magnetic materials. So far single-shot magnetic switching has been limited to ferrimagnetic alloys, multilayers, and designed ferromagnetic (FM) heterostructures. In FM/antiferromagnetic (AFM) bilayers, exchange bias (He) arises from the interfacial exchange coupling between the two layers and reflects the microscopic orientation of the antiferromagnet. Here the possibility of single-shot switching of the antiferromagnet (change of the sign and amplitude of He) with a single femtosecond laser pulse in IrMn/CoGd bilayers is demonstrated. The manipulation is demonstrated in a wide range of fluences for different layer thicknesses and compositions. Atomistic simulations predict ultrafast switching and recovery of the AFM magnetization on a timescale of 2 ps. The results provide the fastest and the most energy-efficient method to set the exchange bias and pave the way to potential applications for ultrafast spintronic devices.
Collapse
Affiliation(s)
- Zongxia Guo
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| | - Junlin Wang
- School of Integrated Circuits, Guangdong University of Technology, Guangdong, 510006, China
| | - Gregory Malinowski
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| | - Boyu Zhang
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wei Zhang
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei, 230012, China
| | - Hangtian Wang
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| | - Chen Lyu
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| | - Yi Peng
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| | - Pierre Vallobra
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei, 230012, China
| | - Yong Xu
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei, 230012, China
| | - Yongbing Xu
- School of Integrated Circuits, Guangdong University of Technology, Guangdong, 510006, China
- School of Physics, Engineering and Technology, University of York, York, YO105DD, UK
| | - Sarah Jenkins
- School of Physics, Engineering and Technology, University of York, York, YO105DD, UK
| | - Roy W Chantrell
- School of Physics, Engineering and Technology, University of York, York, YO105DD, UK
| | - Richard F L Evans
- School of Physics, Engineering and Technology, University of York, York, YO105DD, UK
| | - Stéphane Mangin
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| | - Weisheng Zhao
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing, 100191, China
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei, 230012, China
| | - Michel Hehn
- Institut Jean Lamour, UMR CNRS, Université de Lorraine, Nancy, 54011, France
| |
Collapse
|
25
|
Tang X, Zhou J, Wong NLM, Chai J, Liu Y, Wang S, Song X. Strain-Induced Ferromagnetism in Monolayer T″-Phase VTe 2: Unveiling Magnetic States and Anisotropy for Spintronics Advancement. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:704. [PMID: 38668198 PMCID: PMC11054831 DOI: 10.3390/nano14080704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Two-dimensional (2D) ferromagnets have attracted significant interest for their potential in spintronic device miniaturization, especially since the discovery of ferromagnetic ordering in monolayer materials such as CrI3 and Fe3GeTe2 in 2017. This study presents a detailed investigation into the effects of the Hubbard U parameter, biaxial strain, and structural distortions on the magnetic characteristics of T″-phase VTe2. We demonstrate that setting the Hubbard U to 0 eV provides an accurate representation of the observed structural, magnetic, and electronic features for both bulk and monolayer T″-phase VTe2. The application of strain reveals two distinct ferromagnetic states in the monolayer T″-phase VTe2, each characterized by minor structural differences, but notably different magnetic moments. The T″-1 state, with reduced magnetic moments, emerges under compressive strain, while the T″-2 state, featuring increased magnetic moments, develops under tensile strain. Our analysis also compares the magnetic anisotropy between the T and T″ phases of VTe2, highlighting that the periodic lattice distortion in the T″-phase induces an in-plane anisotropy, which makes it a material with an easy-axis of magnetization. Monte Carlo simulations corroborate our findings, indicating a high Curie temperature of approximately 191 K for the T″-phase VTe2. Our research not only sheds light on the critical aspects of the VTe2 system but also suggests new pathways for enhancing low-dimensional magnetism, contributing to the advancement of spintronics and straintronics.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Physics, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Nancy Lai Mun Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Jianwei Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Yi Liu
- Department of Physics, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
- Materials Genome Institute (MGI), Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | | |
Collapse
|
26
|
Liu S, Hu S, Cui X, Kimura T. Efficient Thermo-Spin Conversion in van der Waals Ferromagnet FeGaTe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309776. [PMID: 38127962 DOI: 10.1002/adma.202309776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Recent discovery of 2D van der Waals magnetic materials has spurred progress in developing advanced spintronic devices. A central challenge lies in enhancing the spin-conversion efficiency for building spin-logic or spin-memory devices. Here, the anomalous Hall and Nernst effects are systematically investigated to uncover significant spin-conversion effects in above-room-temperature van der Waals ferromagnet FeGaTe with perpendicular magnetic anisotropy. The anomalous Hall effect demonstrates an efficient electric spin-charge conversion with a notable spin Hall angle of over 6%. In addition, the anomalous Nernst effect produces a significant transverse voltage at room temperature without a magnetic field, displaying unique temperature dependence with a maximum transverse Seebeck coefficient of 440 nV K-1 and a Nernst angle of ≈62%. Such an innovative thermoelectric signal arises from the efficient thermo-spin conversion effect, where the up-spin and down-spin electrons move in opposite directions under a temperature gradient. The present study highlights the potential of FeGaTe to enhance thermoelectric devices through efficient thermo-spin conversion without the need for a magnetic field.
Collapse
Affiliation(s)
- Shuhan Liu
- Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Shaojie Hu
- Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Xiaomin Cui
- Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Takashi Kimura
- Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Yao Q, Xue Y, Zhao B, Zhu Y, Li Z, Yang Z. Orbital-Selectivity-Induced Robust Quantum Anomalous Hall Effect in Hund's Metals MgFeP. NANO LETTERS 2024; 24:1563-1569. [PMID: 38262051 DOI: 10.1021/acs.nanolett.3c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Ferromagnetic (FM) states with high Curie temperatures (Tc) and strong spin-orbit coupling (SOC) are indispensable for the long-sought room-temperature quantum anomalous Hall (QAH) effects. Here, we propose a two-dimensional (2D) iron-based monolayer MgFeP that exhibits a notably high FM Tc (about 1525 K) along with exceptional structural stabilities. The unique multiorbital nature in MgFeP, where localized d x 2 - y 2 and dxz/yz orbitals coexist with itinerant dxy and dz2 orbitals, renders the monolayer a Hund's metal and in an orbital-selective Mott phase (OSMP). This OSMP triggers an FM double exchange mechanism, rationalizing the high Tc in the Hund's metal. This material transitions to a QAH insulator upon consideration of the SOC effect. By leveraging orbital selectivity, the QAH band gap can be enlarged by more than two times (to 137 meV). Our findings showcase Hund's metals as a promising material platform for realizing high-performance quantum topological electronic devices.
Collapse
Affiliation(s)
- Qingzhao Yao
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Yang Xue
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Bao Zhao
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ye Zhu
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Zhijian Li
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Zhongqin Yang
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| |
Collapse
|
28
|
Li YC, Zhou J. Predicted multiple charge density wave phases in monolayer 1T-NbO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185702. [PMID: 38277682 DOI: 10.1088/1361-648x/ad22f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Layered transition-metal dichalcogenides, such as NbSe2, have been extensively studied for almost half a century due to their intriguing properties, such as charge density wave (CDW) and superconductivity. Can the layered transition-metal dioxide, such as NbO2, be stable and exhibit CDW, given that it has the same crystal structure and electronic configuration as NbSe2? Here, we use first-principles calculations to predict that 1T-NbO2is possibly stable at high temperatures, but it would undergo two CDW transitions with12×12and13×13periodicities at low temperatures. Both CDW transitions are accompanied by a metal-semiconductor transition. Notably, the13×13CDW phase of NbO2possesses localized magnetic moments and hosts a Mott insulating state. This work offers a fresh outlook on studying CDW and Mott transition in low-dimensional oxide materials.
Collapse
Affiliation(s)
- Yi-Chi Li
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jian Zhou
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
29
|
Boix-Constant C, Jenkins S, Rama-Eiroa R, Santos EJG, Mañas-Valero S, Coronado E. Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers. NATURE MATERIALS 2024; 23:212-218. [PMID: 38036623 PMCID: PMC10837074 DOI: 10.1038/s41563-023-01735-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
The advent of twist engineering in two-dimensional crystals enables the design of van der Waals heterostructures with emergent properties. In the case of magnets, this approach can afford artificial antiferromagnets with tailored spin arrangements. Here we fabricate an orthogonally twisted bilayer by twisting two CrSBr ferromagnetic monolayers with an easy-axis in-plane spin anisotropy by 90°. The magnetotransport properties reveal multistep magnetization switching with a magnetic hysteresis opening, which is absent in the pristine case. By tuning the magnetic field, we modulate the remanent state and coercivity and select between hysteretic and non-hysteretic magnetoresistance scenarios. This complexity pinpoints spin anisotropy as a key aspect in twisted magnetic superlattices. Our results highlight control over the magnetic properties in van der Waals heterostructures, leading to a variety of field-induced phenomena and opening a fruitful playground for creating desired magnetic symmetries and manipulating non-collinear magnetic configurations.
Collapse
Affiliation(s)
- Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol) - Universitat de València, Paterna, Spain
| | - Sarah Jenkins
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Ricardo Rama-Eiroa
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK.
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain.
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, UK.
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol) - Universitat de València, Paterna, Spain.
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol) - Universitat de València, Paterna, Spain.
| |
Collapse
|
30
|
Han L, Fu X, Peng R, Cheng X, Dai J, Liu L, Li Y, Zhang Y, Zhu W, Bai H, Zhou Y, Liang S, Chen C, Wang Q, Chen X, Yang L, Zhang Y, Song C, Liu J, Pan F. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. SCIENCE ADVANCES 2024; 10:eadn0479. [PMID: 38277463 PMCID: PMC10816707 DOI: 10.1126/sciadv.adn0479] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultradense and ultrafast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180° switching of Néel vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite Néel vectors as binary "0" and "1." However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90° or 120° switching of Néel vector, which unavoidably require multiple writing channels that contradict ultradense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier and experimentally achieve electrical 180° switching of spin-splitting antiferromagnet Mn5Si3. Such a 180° switching is read out by the Néel vector-induced anomalous Hall effect. On the basis of our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high- and low-resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xizhi Fu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Rui Peng
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xingkai Cheng
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jiankun Dai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liangyang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yidian Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yichi Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wenxuan Zhu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjian Zhou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shixuan Liang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xianzhe Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junwei Liu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Liu X, Zhang D, Deng Y, Jiang N, Zhang E, Shen C, Chang K, Wang K. Tunable Spin Textures in a Kagome Antiferromagnetic Semimetal via Symmetry Design. ACS NANO 2024; 18:1013-1021. [PMID: 38147457 DOI: 10.1021/acsnano.3c10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Kagome antiferromagnetic semimetals such as Mn3Sn have attracted extensive attention for their potential application in antiferromagnetic spintronics. Realizing high manipulation of kagome antiferromagnetic spin states at room temperature can reveal rich emergent phenomena resulting from the quantum interactions between topology, spin, and correlation. Here, we achieved tunable spin textures of Mn3Sn through symmetry design by controlling alternate Mn3Sn and heavy-metal Pt thicknesses. The various topological spin textures were predicted with theoretical simulations, and the skyrmion-induced topological Hall effect, strong spin-dependent scattering, and vertical gradient of spin states were obtained by magnetotransport and magnetic circular dichroism (MCD) spectroscopy measurements in Mn3Sn/Pt heterostructures. Our work provides an effective strategy for the innovative design of topological antiferromagnetic spintronic devices.
Collapse
Affiliation(s)
- Xionghua Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongcheng Deng
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enze Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyou Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
32
|
Lack W, Jenkins S, Meo A, Chantrell RW, McKenna KM, Evans RFL. Thermodynamic properties and switching dynamics of perpendicular shape anisotropy MRAM. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:145801. [PMID: 38157556 DOI: 10.1088/1361-648x/ad19a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The power consumption of modern random access memory (RAM) has been a motivation for the development of low-power non-volatile magnetic RAM (MRAM). Based on a CoFeB/MgO magnetic tunnel junction, MRAM must satisfy high thermal stability and a low writing current while being scaled down to a sub-20 nm size to compete with the densities of current RAM technology. A recent development has been to exploit perpendicular shape anisotropy along the easy axis by creating tower structures, with the free layers' thickness (along the easy axis) being larger than its width. Here we use an atomistic model to explore the temperature dependent properties of thin cylindrical MRAM towers of 5 nm diameter while scaling down the free layer from 48 to 8 nm thick. We find thermal fluctuations are a significant driving force for the switching mechanism at operational temperatures by analysing the switching field distribution from hysteresis data. We find that a reduction of the free layer thickness below 18 nm rapidly loses shape anisotropy, and consequently stability, even at 0 K. Additionally, there is a change in the switching mechanism as the free layer is reduced to 8 nm. Coherent rotation is observed for the 8 nm free layer, while all taller towers demonstrate incoherent rotation via a propagated domain wall.
Collapse
Affiliation(s)
- Wayne Lack
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Sarah Jenkins
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Andrea Meo
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Roy W Chantrell
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Keith M McKenna
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - Richard F L Evans
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
33
|
Khan I, Marfoua B, Hong J. Optical transparency in 2D ferromagnetic WSe 2/1T-VSe 2/WSe 2multilayer with strain induced large anomalous Nernst conductivity. NANOTECHNOLOGY 2024; 35:125704. [PMID: 38055964 DOI: 10.1088/1361-6528/ad12e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Transparent two-dimensional (2D) magnetic materials may bring intriguing features and are indispensable for transparent electronics. However, it is rare to find both optical transparency and room-temperature ferromagnetism simultaneously in a single 2D material. Herein, we explore the possibility of both these features in 2D WSe2/1T-VSe2(1ML)/WSe2and WSe2/1T-VSe2(2ML)/WSe2heterostructures by taking one monolayer (1ML) and two monolayers (2ML) of 1T-VSe2using first-principles calculations. Further, we investigate anomalous Hall conductivity (AHC) and anomalous Nernst conductivity (ANC) using a maximally localized Wannier function. The WSe2/1T-VSe2(1ML)/WSe2and WSe2/1T-VSe2(2ML)/WSe2systems show Curie temperatures of 328 and 405 K. Under biaxial compressive strain, the magnetic anisotropy of both systems is switched from in-plane to out-of-plane. We find a large AHC of 1.51 e2/h and 3.10 e2/h in the electron-doped region for strained WSe2/1T-VSe2(1ML)/WSe2and WSe2/1T-VSe2(2ML)/WSe2systems. Furthermore, we obtain a giant ANC of 3.94 AK-1m-1in a hole-doped strained WSe2/1T-VSe2(2ML)/WSe2system at 100 K. Both WSe2/1T-VSe2(1ML)/WSe2and WSe2/1T-VSe2(2ML)/WSe2are optically transparent in the visible ranges with large refractive indices of 3.2-3.4. Our results may suggest that the WSe2/1T-VSe2/WSe2structure possesses multifunctional physical properties and these features can be utilized for spintronics and optoelectronics device applications such as magnetic sensors, memory devices, and transparent magneto-optic devices at room temperature.
Collapse
Affiliation(s)
- Imran Khan
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Brahim Marfoua
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Jisang Hong
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
34
|
Niraula G, Wu C, Yu X, Malik S, Verma DS, Yang R, Zhao B, Ding S, Zhang W, Sharma SK. The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. J Mater Chem B 2024; 12:286-331. [PMID: 37955235 DOI: 10.1039/d3tb01437a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The Curie temperature is an important thermo-characteristic of magnetic materials, which causes a phase transition from ferromagnetic to paramagnetic by changing the spontaneous re-arrangement of their spins (intrinsic magnetic mechanism) due to an increase in temperature. The self-control-temperature (SCT) leads to the conversion of ferro/ferrimagnetic materials to paramagnetic materials, which can extend the temperature-based applications of these materials from industrial nanotechnology to the biomedical field. In this case, magnetic induction hyperthermia (MIH) with self-control-temperature has been proposed as a physical thermo-therapeutic method for killing cancer tumors in a biologically safe environment. Specifically, the thermal source of MIH is magnetic nanoparticles (MNPs), and thus their biocompatibility and Curie temperature are two important properties, where the former is required for their clinical application, while the latter acts as a switch to automatically control the temperature of MIH. In this review, we focus on the Curie temperature of magnetic materials and provide a complete overview beginning with basic magnetism and its inevitable relation with Curie's law, theoretical prediction and experimental measurement of the Curie temperature. Furthermore, we discuss the significance, evolution from different types of alloys to ferrites and impact of the shape, size, and concentration of particles on the Curie temperature considering the proposed SCT-based MIH together with their biocompatibility. Also, we highlight the thermal efficiency of MNPs in destroying tumor cells and the significance of a low Curie temperature. Finally, the challenges, concluding remarks, and future perspectives in promoting self-control-temperature based MIH to clinical application are discussed.
Collapse
Affiliation(s)
- Gopal Niraula
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil.
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xiaogang Yu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Sonia Malik
- LBLGC, University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
| | - Dalip Singh Verma
- Department of Physics & Astronomical Science, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Rengpeng Yang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Boxiong Zhao
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Shuaiwen Ding
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Wei Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Surender Kumar Sharma
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil.
- Department of Physics, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
35
|
Chen Z, Luo JW, Wang LW. Light-induced ultrafast spin transport in multilayer metallic films originates from sp- d spin exchange coupling. SCIENCE ADVANCES 2023; 9:eadi1618. [PMID: 38100591 PMCID: PMC10848703 DOI: 10.1126/sciadv.adi1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Ultrafast interaction between the femtosecond laser pulse and the magnetic metal provides an efficient way to manipulate the magnetic states of matter. Numerous experimental advancements have been made on multilayer metallic films in the last two decades. However, the underlying physics remains unclear. Here, relying on an efficient ab initio spin dynamics simulation algorithm, we revealed the physics that can unify the progress in different experiments. We found that light-induced ultrafast spin transport in multilayer metallic films originates from the sp-d spin-exchange interaction, which can induce an ultrafast, large, and pure spin current from ferromagnetic metal to nonmagnetic metal without charge carrier transport. The resulting trends of spin demagnetization and spin flow are consistent with most experiments. It can explain a variety of ultrafast light-spin manipulation experiments with different systems and different pump-probe technologies, covering a wide range of work in this field.
Collapse
Affiliation(s)
- Zhanghui Chen
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Jun-Wei Luo
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lin-Wang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Han R, Xue X, Yan Y. Hole-Doping-Induced Perpendicular Magnetic Anisotropy and High Curie Temperature in a CrSX (X = Cl, Br, I) Semiconductor Monolayer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3105. [PMID: 38133001 PMCID: PMC10745588 DOI: 10.3390/nano13243105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A large perpendicular magnetic anisotropy and a high Curie temperature (TC) are crucial for the application of two-dimensional (2D) intrinsic ferromagnets to spintronic devices. Here, we investigated the electronic and magnetic properties of carrier-doped Van der Waals layered CrSX (X = Cl, Br, I) ferromagnets using first-principles calculations. It was found that hole doping can increase the magnitude of the magnetic anisotropy energy (MAE) and change the orientation of the easy magnetization axis at small doping amounts of 2.37 × 1013, 3.98 × 1012, and 3.33 × 1012/cm2 for CrSCl, CrSBr, and CrSI monolayers, respectively. The maximum values of the MAE reach 57, 133, and 1597 μeV/u.c. for the critical hole-doped CrSCl, CrSBr, and CrSI with spin orientation along the (001) direction, respectively. Furthermore, the Fermi energy level of lightly hole-doped CrSX (X = Cl, Br, I) moves into the spin-up valence band, leading to the CrSX (X = Cl, Br, I) magnetic semiconductor monolayer becoming first a half-metal and then a metal. In addition, the TC can also be increased up to 305, 317, and 345 K for CrSCl, CrSBr, and CrSI monolayers at doping amounts of 5.94 × 1014, 5.78 × 1014, and 5.55 × 1014/cm2, respectively. These properties suggest that the hole-doping process can render 2D CrSX (X = Cl, Br, I) monolayers remarkable materials for application to electrically controlled spintronic devices.
Collapse
Affiliation(s)
- Ruilin Han
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaomin Xue
- Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
| | - Yu Yan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China;
| |
Collapse
|
37
|
Jafari M, Rudziński W, Barnaś J, Dyrdał A. Electronic and magnetic properties of 2D vanadium-based transition metal dichalcogenides. Sci Rep 2023; 13:20947. [PMID: 38017049 PMCID: PMC10684541 DOI: 10.1038/s41598-023-48141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
In this paper, electronic and magnetic properties of monolayers and bilayers of Vanadium-based transition metal dichalcogenides VX2 (X = S, Se, Te) in the H phase are investigated theoretically using methods based on DFT calculations as well as analytical methods based on effective spin Hamiltonians. The band structure has been computed for all systems, and then the results have been used to determine exchange parameters and magnetic anisotropy constants. These parameters are subsequently used for the determination of the Curie temperatures, hysteresis curves, and energy of spin-wave excitations. In the latter case, we compare analytical results based on effective spin Hamiltonian with those determined numerically by Quantum ATK software and find a good agreement. The determined Curie temperature for VTe2 monolayers and bilayers is below the room temperature (especially that for bilayers), while for the other two materials, i.e. for VS2 and VSe2, it is above the room temperature, in agreement with available experimental data.
Collapse
Affiliation(s)
- Mirali Jafari
- Department of Mesoscopic Physics, ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Wojciech Rudziński
- Department of Mesoscopic Physics, ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Józef Barnaś
- Department of Mesoscopic Physics, ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Anna Dyrdał
- Department of Mesoscopic Physics, ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
38
|
Stamenova M, Stamenov P, Todorov T. Phonon and Magnon Jets above the Critical Current in Nanowires with Planar Domain Walls. PHYSICAL REVIEW LETTERS 2023; 131:206302. [PMID: 38039465 DOI: 10.1103/physrevlett.131.206302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 09/22/2023] [Indexed: 12/03/2023]
Abstract
We show through nonequilibrium nonadiabatic electron-spin-lattice simulations that above a critical current in magnetic atomic wires with a narrow domain wall (DW), a couple of atomic spaces in width, the electron flow triggers violent stimulated emission of phonons and magnons with an almost complete conversion of the incident electron momentum flux into a phonon and magnon flux. Just below the critical levels of the current flow, the DW achieves maximal velocity of about 3×10^{4} m/s, entering a strongly nonadiabatic regime of DW propagation, followed by a breakdown at higher biases. Above this threshold, a further increase of the current with the applied bias is impossible-the electronic current suffers a heavy suppression and the DW stops. This poses a fundamental limit to the current densities attainable in atomic wires. At the same time it opens up an exciting way of generating the alternative quasiparticle currents, described above, once the requisite electronic-structure properties are met.
Collapse
Affiliation(s)
- Maria Stamenova
- School of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - Plamen Stamenov
- School of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - Tchavdar Todorov
- Centre for Quantum Materials and Technologies, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
39
|
Wang P, Liu Q, Liu N, Kuang M, Yang T, Wang B, Ju M, Yuan H, Jiang X, Zhao J. Electric Field-Controlled Magneto-Optical Kerr Effect in A-Type Antiferromagnetic Fe 2CX 2 (X = F, Cl) and Its Janus Monolayer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37916432 DOI: 10.1021/acsami.3c11811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The magneto-optical Kerr effect (MOKE) is a powerful probe of magnetism and has recently gained new attention in antiferromagnetic (AFM) materials. Through extensive first-principles calculations and group theory analysis, we have identified Fe2CX2 (X = F, Cl) and Janus Fe2CFCl monolayers as ideal A-type collinear AFM materials with high magnetic anisotropy and Néel temperatures. By applying a vertical external electrical field (Ef) of 0.2 V/Å, the MOKE is activated for Fe2CF2 and Fe2CCl2 monolayers without changing their magnetic ground state, and the maximum Kerr rotation angles are 0.13 and 0.08°, respectively. Due to the out-of-plane spontaneous polarization, the intrinsic and nonvolatile MOKE is found in the Janus Fe2CFCl monolayer and the maximal Kerr rotation angle without external electronic field is 0.25°. Moreover, the intrinsic built-in electronic field also gives origin to more robust A-type AFM ordering and reversible Kerr angle against external Ef. Our study suggests that Ef is an effective tool for controlling MOKE in two-dimensional (2D) AFM materials. This research opens the possibility of related studies and applications in AFM spintronics.
Collapse
Affiliation(s)
- Peng Wang
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Qinxi Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Nanshu Liu
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100190, China
| | - Minquan Kuang
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Tie Yang
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Biao Wang
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Meng Ju
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Hongkuan Yuan
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Xue Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
40
|
Zur Y, Noah A, Boix-Constant C, Mañas-Valero S, Fridman N, Rama-Eiroa R, Huber ME, Santos EJG, Coronado E, Anahory Y. Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307195. [PMID: 37702506 DOI: 10.1002/adma.202307195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Recent advancements in 2D materials have revealed the potential of van der Waals magnets, and specifically of their magnetic anisotropy that allows applications down to the 2D limit. Among these materials, CrSBr has emerged as a promising candidate, because its intriguing magnetic and electronic properties have appeal for both fundamental and applied research in spintronics or magnonics. In this work, nano-SQUID-on-tip (SOT) microscopy is used to obtain direct magnetic imaging of CrSBr flakes with thicknesses ranging from monolayer (N = 1) to few-layer (N = 5). The ferromagnetic order is preserved down to the monolayer, while the antiferromagnetic coupling of the layers starts from the bilayer case. For odd layers, at zero applied magnetic field, the stray field resulting from the uncompensated layer is directly imaged. The progressive spin reorientation along the out-of-plane direction (hard axis) is also measured with a finite applied magnetic field, allowing evaluation of the anisotropy constant, which remains stable down to the monolayer and is close to the bulk value. Finally, by selecting the applied magnetic field protocol, the formation of Néel magnetic domain walls is observed down to the single-layer limit.
Collapse
Affiliation(s)
- Yishay Zur
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avia Noah
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Nofar Fridman
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ricardo Rama-Eiroa
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Martin E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Elton J G Santos
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Yonathan Anahory
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
41
|
He W, Yin Y, Gong Q, Evans RFL, Gutfleisch O, Xu BX, Yi M, Guo W. Giant Magnetocaloric Effect in Magnets Down to the Monolayer Limit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300333. [PMID: 37150875 DOI: 10.1002/smll.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Indexed: 05/09/2023]
Abstract
2D magnets can potentially revolutionize information technology, but their potential application to cooling technology and magnetocaloric effect (MCE) in a material down to the monolayer limit remain unexplored. Herein, it is revealed through multiscale calculations the existence of giant MCE and its strain tunability in monolayer magnets such as CrX3 (X = F, Cl, Br, I), CrAX (A = O, S, Se; X = F, Cl, Br, I), and Fe3 GeTe2 . The maximum adiabatic temperature change (Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ ), maximum isothermal magnetic entropy change, and specific cooling power in monolayer CrF3 are found as high as 11 K, 35 µJ m-2 K-1 , and 3.5 nW cm-2 under a magnetic field of 5 T, respectively. A 2% biaxial and 5% a-axis uniaxial compressive strain can remarkably increaseΔ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ of CrCl3 and CrOF by 230% and 37% (up to 15.3 and 6.0 K), respectively. It is found that large net magnetic moment per unit area favors improved MCE. These findings advocate the giant-MCE monolayer magnets, opening new opportunities for magnetic cooling at nanoscale.
Collapse
Affiliation(s)
- Weiwei He
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210016, China
| | - Yan Yin
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210016, China
| | - Qihua Gong
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210016, China
| | | | - Oliver Gutfleisch
- Institute of Materials Science, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Bai-Xiang Xu
- Institute of Materials Science, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Min Yi
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210016, China
| |
Collapse
|
42
|
Dos Santos G, Meyer R, Tramontina D, Bringa EM, Urbassek HM. Spin-lattice-dynamics analysis of magnetic properties of iron under compression. Sci Rep 2023; 13:14282. [PMID: 37653067 PMCID: PMC10471586 DOI: 10.1038/s41598-023-41499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Compression of a magnetic material leads to a change in its magnetic properties. We examine this effect using spin-lattice dynamics for the special case of bcc-Fe, using both single- and poly-crystalline Fe and a bicontinuous nanofoam structure. We find that during the elastic phase of compression, the magnetization increases due to a higher population of the nearest-neighbor shell of atoms and the resulting higher exchange interaction of neighboring spins. In contrast, in the plastic phase of compression, the magnetization sinks, as defects are created, increasing the disorder and typically decreasing the average atom coordination number. The effects are more pronounced in single crystals than in polycrystals, since the presence of defects in the form of grain boundaries counteracts the increase in magnetization during the elastic phase of compression. Also, the effects are more pronounced at temperatures close to the Curie temperature than at room temperature. In nanofoams, the effect of compression is minor since compression proceeds more by void reduction and filament bending-with negligible effect on magnetization-than by strain within the ligaments. These findings will prove useful for tailoring magnetization under strain by introducing plasticity.
Collapse
Affiliation(s)
- Gonzalo Dos Santos
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, Mendoza, 5500, Argentina
| | - Robert Meyer
- Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| | - Diego Tramontina
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, Mendoza, 5500, Argentina
| | - Eduardo M Bringa
- CONICET and Facultad de Ingeniería, Universidad de Mendoza, Mendoza, 5500, Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Herbert M Urbassek
- Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.
| |
Collapse
|
43
|
Blachowicz T, Ehrmann A, Wortmann M. Exchange Bias in Nanostructures: An Update. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2418. [PMID: 37686926 PMCID: PMC10489968 DOI: 10.3390/nano13172418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Exchange bias (EB) is a unidirectional anisotropy occurring in exchange-coupled ferromagnetic/antiferromagnetic systems, such as thin films, core-shell particles, or nanostructures. In addition to a horizontal shift of the hysteresis loop, defining the exchange bias, asymmetric loops and even vertical shifts can often be found. While the effect is used in hard disk read heads and several spintronics applications, its origin is still not fully understood. Especially in nanostructures with their additional shape anisotropies, interesting and often unexpected effects can occur. Here, we provide an overview of the most recent experimental findings and theoretical models of exchange bias in nanostructures from different materials.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Institute of Physics—Center for Science and Education, Silesian University of Technology, ul. Konarskiego 22B, 44-100 Gliwice, Poland;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, Interaktion 1, 33619 Bielefeld, Germany
| | - Martin Wortmann
- Faculty of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany;
| |
Collapse
|
44
|
Cheng F, Wang C, Xu Y, Ma W, Liu Y. Multiphysics Modeling of Plasmon-Enhanced All-Optical Helicity-Dependent Switching. ACS PHOTONICS 2023; 10:1259-1267. [PMID: 37928963 PMCID: PMC10621044 DOI: 10.1021/acsphotonics.2c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 11/07/2023]
Abstract
In this work, we propose a multiphysics approach to simulate all-optical helicity-dependent switching induced by the local hot spots of plasmonic nanostructures. Due to the plasmonic resonance of an array of gold nanodisks, strong electromagnetic fields are generated within the magnetic recording media underneath the gold nanodisks. We construct a multiphysics framework considering the opto-magnetic and opto-thermal effects, and then model the magnetization switching using the Monte Carlo method. Our approach bridges the gap between plasmonic nanostructure design and magnetization switching modeling, allowing for the simulation of helicity-dependent, nanoscale magnetization switching in the presence of localized surface plasmons.
Collapse
Affiliation(s)
- Feng Cheng
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chuangtang Wang
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yihao Xu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Wei Ma
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yongmin Liu
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
45
|
Ren L, Zhou C, Song X, Seng HT, Liu L, Li C, Zhao T, Zheng Z, Ding J, Feng YP, Chen J, Teo KL. Efficient Spin-Orbit Torque Switching in a Perpendicularly Magnetized Heusler Alloy MnPtGe Single Layer. ACS NANO 2023; 17:6400-6409. [PMID: 36942968 DOI: 10.1021/acsnano.2c11132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.
Collapse
Affiliation(s)
- Lizhu Ren
- Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore
| | - Chenghang Zhou
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Xiaohe Song
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 119077, Singapore
- Department of Physics, National University of Singapore, 117551 Singapore
| | - Herng Tun Seng
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Liang Liu
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaojiang Li
- School of Mechanical and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tieyang Zhao
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Zhenyi Zheng
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 117551 Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Kie Leong Teo
- Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore
| |
Collapse
|
46
|
Rana A, Liao CT, Iacocca E, Zou J, Pham M, Lu X, Subramanian EEC, Lo YH, Ryan SA, Bevis CS, Karl RM, Glaid AJ, Rable J, Mahale P, Hirst J, Ostler T, Liu W, O'Leary CM, Yu YS, Bustillo K, Ohldag H, Shapiro DA, Yazdi S, Mallouk TE, Osher SJ, Kapteyn HC, Crespi VH, Badding JV, Tserkovnyak Y, Murnane MM, Miao J. Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. NATURE NANOTECHNOLOGY 2023; 18:227-232. [PMID: 36690739 DOI: 10.1038/s41565-022-01311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/13/2022] [Indexed: 05/21/2023]
Abstract
Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.
Collapse
Affiliation(s)
- Arjun Rana
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Chen-Ting Liao
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Ezio Iacocca
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
- Center for Magnetism and Magnetic Nanostructures, University of Colorado, Colorado Springs, CO, USA
| | - Ji Zou
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Minh Pham
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xingyuan Lu
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Emma-Elizabeth Cating Subramanian
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Yuan Hung Lo
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Sinéad A Ryan
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Charles S Bevis
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Robert M Karl
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Andrew J Glaid
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Jeffrey Rable
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Pratibha Mahale
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Hirst
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Thomas Ostler
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
- Department of Physics and Mathematics, University of Hull, Hull, UK
| | - William Liu
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Colum M O'Leary
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Young-Sang Yu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hendrik Ohldag
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Shapiro
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, USA
| | - Thomas E Mallouk
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley J Osher
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Henry C Kapteyn
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Vincent H Crespi
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - John V Badding
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Yaroslav Tserkovnyak
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret M Murnane
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Jianwei Miao
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA.
| |
Collapse
|
47
|
Yu D, Ga Y, Liang J, Jia C, Yang H. Voltage-Controlled Dzyaloshinskii-Moriya Interaction Torque Switching of Perpendicular Magnetization. PHYSICAL REVIEW LETTERS 2023; 130:056701. [PMID: 36800473 DOI: 10.1103/physrevlett.130.056701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Magnetization switching is the most important operation in spintronic devices. In modern nonvolatile magnetic random-access memory (MRAM), it is usually realized by spin-transfer torque (STT) or spin-orbit torque (SOT). However, both STT and SOT MRAM require current to drive magnetization switching, which will cause Joule heating. Here, we report an alternative mechanism, Dzyaloshinskii-Moriya interaction (DMI) torque, that can realize magnetization switching fully controlled by voltage pulses. We find that a consequential voltage-controlled reversal of DMI chirality in multiferroics can lead to continued expansion of a skyrmion thanks to the DMI torque. Enough DMI torque will eventually make the skyrmion burst into a quasiuniform ferromagnetic state with reversed magnetization, thus realizing the switching of a perpendicular magnet. The discovery is demonstrated in two-dimensional multiferroics, CuCrP_{2}Se_{6} and CrN, using first-principles calculations and micromagnetic simulations. As an example, we applied the DMI torque for simulating leaky-integrate-fire functionality of biological neurons. Our discovery of DMI torque switching of perpendicular magnetization provides tremendous potential toward magnetic-field-free and current-free spintronic devices, and neuromorphic computing as well.
Collapse
Affiliation(s)
- Dongxing Yu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yonglong Ga
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jinghua Liang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chenglong Jia
- Key Laboratory for Magnetism and Magnetic Materials of MOE and Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China
| | - Hongxin Yang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
48
|
Tang C, Zhang L, Sanvito S, Du A. Enabling Room-Temperature Triferroic Coupling in Dual Transition-Metal Dichalcogenide Monolayers Via Electronic Asymmetry. J Am Chem Soc 2023; 145:2485-2491. [PMID: 36657156 DOI: 10.1021/jacs.2c11862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triferroic compounds are the ideal platform for multistate information devices but are rare in the two-dimensional (2D) form, and none of them can maintain macroscopic order at room temperature. Herein, we propose a general strategy for achieving 2D triferroicity by imposing electric polarization into a ferroelastic magnet. Accordingly, dual transition-metal dichalcogenides, for example, 1T'-CrCoS4, are demonstrated to display room-temperature triferroicity. The magnetic order of 1T'-CrCoS4 undergoes a magnetic transition during the ferroic switching, indicating robust triferroic magnetoelectric coupling. In addition, the negative out-of-plane piezoelectricity and strain-tunable magnetic anisotropy make the 1T'-CrCoS4 monolayer a strong candidate for practical applications. Following the proposed scheme, a new class of 2D room-temperature triferroic materials is introduced, providing a promising platform for advanced spintronics.
Collapse
Affiliation(s)
- Cheng Tang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD4000, Australia
| | - Lei Zhang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD4000, Australia
| | - Stefano Sanvito
- School of Physics and CRANN Institute, Trinity College, Dublin2, Ireland
| | - Aijun Du
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD4000, Australia
| |
Collapse
|
49
|
Chen H, Asif S, Dolui K, Wang Y, Támara-Isaza J, Goli VMLDP, Whalen M, Wang X, Chen Z, Zhang H, Liu K, Jariwala D, Jungfleisch MB, Chakraborty C, May AF, McGuire MA, Nikolic BK, Xiao JQ, Ku MJH. Above-Room-Temperature Ferromagnetism in Thin van der Waals Flakes of Cobalt-Substituted Fe 5GeTe 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3287-3296. [PMID: 36602594 DOI: 10.1021/acsami.2c18028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) magnetic van der Waals materials provide a powerful platform for studying the fundamental physics of low-dimensional magnetism, engineering novel magnetic phases, and enabling thin and highly tunable spintronic devices. To realize high-quality and practical devices for such applications, there is a critical need for robust 2D magnets with ordering temperatures above room temperature that can be created via exfoliation. Here, the study of exfoliated flakes of cobalt-substituted Fe5GeTe2 (CFGT) exhibiting magnetism above room temperature is reported. Via quantum magnetic imaging with nitrogen-vacancy centers in diamond, ferromagnetism at room temperature was observed in CFGT flakes as thin as 16 nm corresponding to 16 layers. This result expands the portfolio of thin room-temperature 2D magnet flakes exfoliated from robust single crystals that reach a thickness regime relevant to practical spintronic applications. The Curie temperature Tc of CFGT ranges from 310 K in the thinnest flake studied to 328 K in the bulk. To investigate the prospect of high-temperature monolayer ferromagnetism, Monte Carlo calculations were performed, which predicted a high value of Tc of ∼270 K in CFGT monolayers. Pathways toward further enhancing monolayer Tc are discussed. These results support CFGT as a promising platform for realizing high-quality room-temperature 2D magnet devices.
Collapse
Affiliation(s)
- Hang Chen
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Shahidul Asif
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Kapildeb Dolui
- Lomare Technologies Ltd., 6 London Street, LondonEC3R 7LP, United Kingdom
| | - Yang Wang
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Jeyson Támara-Isaza
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
- Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C.110851, Colombia
| | - V M L Durga Prasad Goli
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Matthew Whalen
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Xinhao Wang
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Zhijie Chen
- Department of Physics, Georgetown University, Washington, District of Columbia20057, United States
| | - Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Kai Liu
- Department of Physics, Georgetown University, Washington, District of Columbia20057, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - M Benjamin Jungfleisch
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Chitraleema Chakraborty
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Andrew F May
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Michael A McGuire
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Branislav K Nikolic
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - John Q Xiao
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
| | - Mark J H Ku
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware19716, United States
| |
Collapse
|
50
|
Durhuus FL, Skovhus T, Olsen T. Plane wave implementation of the magnetic force theorem for magnetic exchange constants: application to bulk Fe, Co and Ni. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:105802. [PMID: 36595249 DOI: 10.1088/1361-648x/acab4b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We present a plane wave implementation of the magnetic force theorem, which provides a first principles framework for extracting exchange constants parameterizing a classical Heisenberg model description of magnetic materials. It is shown that the full microscopic exchange tensor may be expressed in terms of the static Kohn-Sham susceptibility tensor and the exchange-correlation magnetic field. This formulation allows one to define arbitrary magnetic sites localized to predefined spatial regions, hence rendering the problem of finding Heisenberg parameters independent of any orbital decomposition of the problem. The susceptibility is calculated in a plane wave basis, which allows for systematic convergence with respect to unoccupied bands and spatial representation. We then apply the method to the well-studied problem of calculating adiabatic spin wave spectra for bulk Fe, Co and Ni, finding good agreement with previous calculations. In particular, we utilize the freedom of defining magnetic sites to show that the calculated Heisenberg parameters are robust towards changes in the definition of magnetic sites. This demonstrates that the magnetic sites can be regarded as well-defined and thus asserts the relevance of the Heisenberg model description despite the itinerant nature of the magnetic state.
Collapse
Affiliation(s)
- Frederik L Durhuus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|