1
|
Lin D, Bagnani M, Almohammadi H, Yuan Y, Zhao Y, Mezzenga R. Single-Step Control of Liquid-Liquid Crystalline Phase Separation by Depletion Gradients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312564. [PMID: 38692672 DOI: 10.1002/adma.202312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Fine-tuning nucleation and growth of colloidal liquid crystalline (LC) droplets, also known as tactoids, is highly desirable in both fundamental science and technological applications. However, the tactoid structure results from the trade-off between thermodynamics and nonequilibrium kinetics effects, and controlling liquid-liquid crystalline phase separation (LLCPS) in these systems is still a work in progress. Here, a single-step strategy is introduced to obtain a rich palette of morphologies for tactoids formed via nucleation and growth within an initially isotropic phase exposed to a gradient of depletants. The simultaneous appearance is shown of rich LC structures along the depleting potential gradient, where the position of each LC structure is correlated with the magnitude of the depleting potential. Changing the size (nanoparticles) or the nature (polymers) of the depleting agent provides additional, precise control over the resulting LC structures through a size-selective mechanism, where the depletant may be found both within and outside the LC droplets. The use of depletion gradients from depletants of varying sizes and nature offers a powerful toolbox for manipulation, templating, imaging, and understanding heterogeneous colloidal LC structures.
Collapse
Affiliation(s)
- Dongdong Lin
- School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P. R. China
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P. R. China
| | - Massimo Bagnani
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Hamed Almohammadi
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Ye Yuan
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P. R. China
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
- ETH Zurich, Department of Materials, Zurich, 8093, Switzerland
| |
Collapse
|
2
|
Sun Q, Lutz-Bueno V, Zhou J, Yuan Y, Fischer P. Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions. NANOSCALE ADVANCES 2022; 4:4863-4870. [PMID: 36381514 PMCID: PMC9642361 DOI: 10.1039/d2na00303a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanocrystals (CNCs) are a promising bio-based material that has attracted significant attention in the fabrication of functional hybrid materials. The rod-like shape and negative surface charge of CNCs enable their rich colloidal behavior, such as a liquid crystalline phase and hydrogel formation that can be mediated by different additives. This study investigates the effect of depletion-induced attraction in the presence of non-absorbing polyethylene glycol (PEG) of different molecular weights in CNC aqueous dispersions, where the polymer molecules deplete the space around particles, apply osmotic pressure and drive the phase transition. Polarized light microscopy (PLM), rheology, small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are used to characterize the phase behavior over a time period of one month. In our results, pure CNC dispersion shows three typical liquid crystal shear rheology regimes and cholesteric self-assembly behavior. Tactoid nucleation, growth and coalescence are observed microscopically, and eventually the dispersion presents macroscopic phase separation. PEG with lower molecular weight induces weak attractive depletion forces. Tactoid growth is limited, and the whole system turns into a fully nematic phase macroscopically. With PEG of higher molecular weight, attractive depletion force becomes predominant, thus CNC self-assembly is inhibited and nematic hydrogel formation is triggered. Overall, we demonstrate that depletion induced attraction forces by the addition of PEG enable precise tuning of CNC self-assembly and phase behavior with controllable mechanical strength and optical activity. These findings deepen our fundamental understanding of cellulose nanocrystals and advance their application in colloidal systems and nanomaterials.
Collapse
Affiliation(s)
- Qiyao Sun
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| | - Viviane Lutz-Bueno
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
- Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Jiangtao Zhou
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| | - Ye Yuan
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| |
Collapse
|
3
|
Kumar S, Ray D, Abbas S, Saha D, Aswal VK, Kohlbrecher J. Reentrant phase behavior of nanoparticle solutions probed by small-angle scattering. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Zhao J, Gulan U, Horie T, Ohmura N, Han J, Yang C, Kong J, Wang S, Xu BB. Advances in Biological Liquid Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900019. [PMID: 30892830 DOI: 10.1002/smll.201900019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Biological liquid crystals, a rich set of soft materials with rod-like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod-shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first-order phase transition and the coexistence of multi-phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady-state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self-propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.
Collapse
Affiliation(s)
- Jianguo Zhao
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
- Third Institute of Physics-Biophysics, University of Göttingen, 37077, Göttingen, Germany
| | - Utku Gulan
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Takafumi Horie
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Naoto Ohmura
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Jun Han
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Steven Wang
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
5
|
Nyström G, Mezzenga R. Liquid crystalline filamentous biological colloids: Analogies and differences. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kumar S, Yadav I, Abbas S, Aswal VK, Kohlbrecher J. Interactions in reentrant phase behavior of a charged nanoparticle solution by multivalent ions. Phys Rev E 2017; 96:060602. [PMID: 29347280 DOI: 10.1103/physreve.96.060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 06/07/2023]
Abstract
The interactions following a reentrant phase transition of charged silica nanoparticles from one phase to two phases and back to one phase by varying the concentration of multivalent counterions have been examined. The observations are far beyond the framework of Debye-Hückel or even nonlinear Poisson-Boltzmann equations and demonstrate the universal behavior of multivalent counterion-driven charge inversion. We show that the interplay of multivalent counterion-induced short-range attraction and long-range electrostatic repulsion between nanoparticles results in reentrant phase behavior.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Indresh Yadav
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sohrab Abbas
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 PSI Villigen, Switzerland
| |
Collapse
|
7
|
Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis. Sci Rep 2017; 7:1211. [PMID: 28450728 PMCID: PMC5430637 DOI: 10.1038/s41598-017-01287-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022] Open
Abstract
The isotropic and nematic (I + N) coexistence for rod-like colloids is a signature of the first-order thermodynamics nature of this phase transition. However, in the case of amyloid fibrils, the biphasic region is too small to be experimentally detected, due to their extremely high aspect ratio. Herein, we study the thermophoretic behaviour of fluorescently labelled β-lactoglobulin amyloid fibrils by inducing a temperature gradient across a microfluidic channel. We discover that fibrils accumulate towards the hot side of the channel at the temperature range studied, thus presenting a negative Soret coefficient. By exploiting this thermophoretic behaviour, we show that it becomes possible to induce a continuous I-N transition with the I and N phases at the extremities of the channel, starting from an initially single N phase, by generating an appropriate concentration gradient along the width of the microchannel. Accordingly, we introduce a new methodology to control liquid crystal phase transitions in anisotropic colloidal suspensions. Because the induced order-order transitions are achieved under stationary conditions, this may have important implications in both applied colloidal science, such as in separation and fractionation of colloids, as well as in fundamental soft condensed matter, by widening the accessibility of target regions in the phase diagrams.
Collapse
|
8
|
Zhao J, Bolisetty S, Isabettini S, Kohlbrecher J, Adamcik J, Fischer P, Mezzenga R. Continuous Paranematic Ordering of Rigid and Semiflexible Amyloid-Fe3O4 Hybrid Fibrils in an External Magnetic Field. Biomacromolecules 2016; 17:2555-61. [PMID: 27304090 DOI: 10.1021/acs.biomac.6b00539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
External magnetic field is a powerful approach to induce orientational order in originally disordered suspensions of magneto-responsive anisotropic particles. By small angle neutron scattering and optical birefringence measurement technology, we investigated the effect of magnetic field on the spatial ordering of hybrid amyloid fibrils with different aspect ratios (length-to-diameter) and flexibilities decorated by spherical Fe3O4 nanoparticles. A continuous paranematic ordering from an initially isotropic suspension was observed upon increasing magnetic field strength, with spatial orientation increasing with colloidal volume fraction. At constant dimensionless concentration, stiff hybrid fibrils with varying aspect ratios and volume fractions, fall on the same master curve, with equivalent degrees of ordering at identical magnetic fields. However, the semiflexible hybrid fibrils with contour length close to persistence length exhibit a lower degree of alignment. This is consistent with Khokhlov-Semenov theoretical predictions. These findings sharpen the experimental toolbox to design colloidal systems with controllable degree of orientational ordering.
Collapse
Affiliation(s)
- Jianguo Zhao
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Sreenath Bolisetty
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Stéphane Isabettini
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Joachim Kohlbrecher
- Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute , 5232 Villigen, Switzerland
| | - Jozef Adamcik
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Zhao J, Bolisetty S, Adamcik J, Han J, Fernández-Ronco MP, Mezzenga R. Freeze-Thaw Cycling Induced Isotropic-Nematic Coexistence of Amyloid Fibrils Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2492-2499. [PMID: 26907697 DOI: 10.1021/acs.langmuir.6b00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are charged semiflexible assemblies with very large aspect ratio (length to diameter, L/D). Because of this large aspect ratio, the isotropic (I) and nematic (N) phase coexistence expected from the first-order thermodynamic nature of the I-N phase transition, as predicted from the Onsager's theory, is vanishingly small and, in practice, challenging to experimentally observe. In this study we present a remarkable widening of the I + N biphasic region in β-lactoglobulin fibrils suspension via freeze-thaw (F-T) cycling. The demixing behavior can be induced and controlled by a slow growth of propagation front of the ice crystals, which grow by excluding the amyloid fibrils from the crystal phase and thus concentrating them in the liquid phase. The growth of the ice crystals is accompanied by the formation of concentrated and elongated tactoid-like structure in the liquid phase. During the subsequent thawing cycling, at large tactoid domains, the mismatch in density caused by the presence of amyloid fibrils is sufficient to generate a sedimentation of the N phase at the bottom of the vial, coexisting with an I phase on the top. We reason why, despite the remarkable stability of the coexisting I and N phases observed over several weeks after F-T cycling, the biphasic region is understood to be a nonequilibrium, metastable state. Yet, the results in this study suggest that the F-T treatment is an effective approach to stabilize multiphase coexistence of liquid crystalline phases in colloidal suspensions of anisotropic particles without the need of additives, such as depleting agents, needed to modify interaction potentials.
Collapse
Affiliation(s)
| | | | | | - Jun Han
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences , CN-362200 Quanzhou, China
| | | | | |
Collapse
|