1
|
Ghaffarizadeh SA, Wang GJ. A Picture is Worth a Thousand Timesteps: Excess Entropy Scaling for Rapid Estimation of Diffusion Coefficients in Molecular-Dynamics Simulations of Fluids. J Chem Theory Comput 2024; 20:10362-10370. [PMID: 39508678 PMCID: PMC11635976 DOI: 10.1021/acs.jctc.4c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In molecular-dynamics simulations of fluids, the Einstein-Helfand (EH) and Green-Kubo (GK) relationships are frequently used to compute a variety of transport coefficients, including diffusion coefficients. These relationships are formally valid in the limit of infinite sampling time: The error in the estimate of a transport coefficient (relative to an infinitely long simulation) asymptotically approaches zero as more dynamics are simulated and recorded. In practice, of course, one can only simulate a finite number of particles for a finite amount of time. In this work, we show that in this pre-asymptotic regime, an approach for estimating diffusion coefficients based upon excess entropy scaling (EES) achieves a significantly lower error than either EH or GK relationships at fixed online sampling time. This approach requires access only to structural information at the level of the radial distribution function (RDF). We further demonstrate that the use of a recently developed RDF mollification scheme significantly reduces the amount of sampling time needed to converge to the long-time value of the diffusion coefficient. We also demonstrate favorable sample-to-sample variances in the diffusion coefficient estimate obtained using EES as compared to those obtained using EH and GK.
Collapse
Affiliation(s)
- S. Arman Ghaffarizadeh
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gerald J. Wang
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Khrapak SA, Khrapak AG. Quasiuniversal behavior of shear relaxation times in simple fluids. Phys Rev E 2024; 110:054101. [PMID: 39690619 DOI: 10.1103/physreve.110.054101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/07/2024] [Indexed: 12/19/2024]
Abstract
We calculate the shear relaxation times in four important simple monatomic model fluids: Lennard-Jones, Yukawa, soft-sphere, and hard-sphere fluids. It is observed that in properly reduced units, the shear relaxation times exhibit quasiuniversal behavior when the density increases from the gaslike low values to the high-density regime near crystallization. They first decrease with density at low densities, reach minima at moderate densities, and then increase toward the freezing point. The reduced relaxation times at the minima and at the fluid-solid phase transition are all comparable for the various systems investigated, despite more than ten orders of magnitude difference in real systems. Important implications of these results are discussed.
Collapse
|
3
|
Douglass IM, Dyre JC, Costigliola L. Complexity Scaling of Liquid Dynamics. PHYSICAL REVIEW LETTERS 2024; 133:068001. [PMID: 39178431 DOI: 10.1103/physrevlett.133.068001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024]
Abstract
According to excess-entropy scaling, dynamic properties of liquids like viscosity and diffusion coefficient are determined by the entropy. This link between dynamics and thermodynamics is increasingly studied and of interest also for industrial applications, but hampered by the challenge of calculating entropy efficiently. Utilizing the fact that entropy is basically the Kolmogorov complexity, which can be estimated from optimal compression algorithms [Avinery et al., Phys. Rev. Lett. 123, 178102 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.178102; Martiniani et al., Phys. Rev. X 9, 011031 (2019)PRXHAE2160-330810.1103/PhysRevX.9.011031], we here demonstrate that the diffusion coefficients of four simple liquids follow a quasiuniversal exponential function of the optimal compression length of a single equilibrium configuration. We conclude that "complexity scaling" has the potential to become a useful tool for estimating dynamic properties of any liquid from a single configuration.
Collapse
|
4
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. IV. Connection of fine-grained and coarse-grained dynamics with the Stokes-Einstein and Stokes-Einstein-Debye relations. J Chem Phys 2024; 161:034114. [PMID: 39012809 DOI: 10.1063/5.0212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Applying an excess entropy scaling formalism to the coarse-grained (CG) dynamics of liquids, we discovered that missing rotational motions during the CG process are responsible for artificially accelerated CG dynamics. In the context of the dynamic representability between the fine-grained (FG) and CG dynamics, this work introduces the well-known Stokes-Einstein and Stokes-Einstein-Debye relations to unravel the rotational dynamics underlying FG trajectories, thereby allowing for an indirect evaluation of the effective rotations based only on the translational information at the reduced CG resolution. Since the representability issue in CG modeling limits a direct evaluation of the shear stress appearing in the Stokes-Einstein and Stokes-Einstein-Debye relations, we introduce a translational relaxation time as a proxy to employ these relations, and we demonstrate that these relations hold for the ambient conditions studied in our series of work. Additional theoretical links to our previous work are also established. First, we demonstrate that the effective hard sphere radius determined by the classical perturbation theory can approximate the complex hydrodynamic radius value reasonably well. Furthermore, we present a simple derivation of an excess entropy scaling relationship for viscosity by estimating the elliptical integral of molecules. In turn, since the translational and rotational motions at the FG level are correlated to each other, we conclude that the "entropy-free" CG diffusion only depends on the shape of the reference molecule. Our results and analyses impart an alternative way of recovering the FG diffusion from the CG description by coupling the translational and rotational motions at the hydrodynamic level.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Saric D, Bell IH, Guevara-Carrion G, Vrabec J. Influence of repulsion on entropy scaling and density scaling of monatomic fluids. J Chem Phys 2024; 160:104503. [PMID: 38456532 DOI: 10.1063/5.0196592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Entropy scaling is applied to the shear viscosity, self-diffusion coefficient, and thermal conductivity of simple monatomic fluids. An extensive molecular dynamics simulation series is performed to obtain these transport properties and the residual entropy of three potential model classes with variable repulsive exponents: n, 6 Mie (n = 9, 12, 15, and 18), Buckingham's exponential-six (α = 12, 14, 18, and 30), and Tang-Toennies (αT = 4.051, 4.275, and 4.600). A wide range of liquid and supercritical gas- and liquid-like states is covered with a total of 1120 state points. Comparisons to equations of state, literature data, and transport property correlations are made. Although the absolute transport property values within a given potential model class may strongly depend on the repulsive exponent, it is found that the repulsive steepness plays a negligible role when entropy scaling is applied. Hence, the plus-scaled transport properties of n, 6 Mie, exponential-six, and Tang-Toennies fluids lie basically on one master curve, which closely corresponds with entropy scaling correlations for the Lennard-Jones fluid. This trend is confirmed by literature data of n, 6 Mie, and exponential-six fluids. Furthermore, entropy scaling holds for state points where the Pearson correlation coefficient R is well below 0.9. The condition R > 0.9 for strongly correlating liquids is thus not necessary for the successful application of entropy scaling, pointing out that isomorph theory may be a part of a more general framework that is behind the success of entropy scaling. Density scaling reveals a strong influence of the repulsive exponent on this particular approach.
Collapse
Affiliation(s)
- Denis Saric
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | | | - Jadran Vrabec
- Thermodynamics, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| |
Collapse
|
6
|
Dyre JC. Solid-that-Flows Picture of Glass-Forming Liquids. J Phys Chem Lett 2024; 15:1603-1617. [PMID: 38306474 PMCID: PMC10875679 DOI: 10.1021/acs.jpclett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
This perspective article reviews arguments that glass-forming liquids are different from those of standard liquid-state theory, which typically have a viscosity in the mPa·s range and relaxation times on the order of picoseconds. These numbers grow dramatically and become 1012 - 1015 times larger for liquids cooled toward the glass transition. This translates into a qualitative difference, and below the "solidity length" which is roughly one micron at the glass transition, a glass-forming liquid behaves much like a solid. Recent numerical evidence for the solidity of ultraviscous liquids is reviewed, and experimental consequences are discussed in relation to dynamic heterogeneity, frequency-dependent linear-response functions, and the temperature dependence of the average relaxation time.
Collapse
Affiliation(s)
- Jeppe C Dyre
- "Glass and Time", IMFUFA, Dept. of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Nicasio-Collazo LA, Ramírez-Medina CA, Torres-Carbajal A. Pseudo hard-sphere viscosities from equilibrium Molecular Dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:425401. [PMID: 37451255 DOI: 10.1088/1361-648x/ace7a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Transport coefficients like shear, bulk and longitudinal viscosities are sensitive to the intermolecular interaction potential and finite size effects when are numerically determined. For the hard-sphere (HS) fluid, such transport properties are determined almost exclusively with computer simulations. However, their systematic determination and analysis throughout shear stress correlation functions and the Green-Kubo formalism can not be done due to discontinuous nature of the interaction potential. Here, we use the pseudo hard-sphere (PHS) potential to determine pressure correlation functions as a function of volume fraction in order to compute mentioned viscosities. Simulation results are compared to available event-driven molecular dynamics of the HS fluid and also used to propose empirical corrections for the Chapman-Enskog zero density limit of shear viscosity. Moreover, we show that PHS potential is a reliable representation of the HS fluid and can be used to compute transport coefficients. The molecular simulation results of the present work are valuable for further exploration of HS-type fluids or extend the approach to compute transport properties of hard-colloid suspensions.
Collapse
Affiliation(s)
- Luz Adriana Nicasio-Collazo
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Chapultepec 1570, Privadas de Pedregal 78295 San Luis Potosí, SLP, México
- Tecnológico Nacional de México-Instituto Tecnológico de León, Léon, Guanajuato 37290, México
| | | | - Alexis Torres-Carbajal
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 Ciudad de México, México
| |
Collapse
|
8
|
Sammüller F, Hermann S, de Las Heras D, Schmidt M. Noether-Constrained Correlations in Equilibrium Liquids. PHYSICAL REVIEW LETTERS 2023; 130:268203. [PMID: 37450808 DOI: 10.1103/physrevlett.130.268203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Liquid structure carries deep imprints of an inherent thermal invariance against a spatial transformation of the underlying classical many-body Hamiltonian. At first order in the transformation field Noether's theorem yields the local force balance. Three distinct two-body correlation functions emerge at second order, namely the standard two-body density, the localized force-force correlation function, and the localized force gradient. An exact Noether sum rule interrelates these correlators. Simulations of Lennard-Jones, Yukawa, soft-sphere dipolar, Stockmayer, Gay-Berne and Weeks-Chandler-Andersen liquids, of monatomic water and of a colloidal gel former demonstrate the fundamental role in the characterization of spatial structure.
Collapse
Affiliation(s)
- Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
9
|
Eriçok OB, Mason JK. Geometric conjecture about phase transitions. Phys Rev E 2023; 107:064107. [PMID: 37464600 DOI: 10.1103/physreve.107.064107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2023] [Indexed: 07/20/2023]
Abstract
As phenomena that necessarily emerge from the collective behavior of interacting particles, phase transitions continue to be difficult to predict using statistical thermodynamics. A recent proposal called the topological hypothesis suggests that the existence of a phase transition could perhaps be inferred from changes to the topology of the accessible part of the configuration space. This paper instead suggests that such a topological change is often associated with a dramatic change in the configuration space geometry, and that the geometric change is the actual driver of the phase transition. More precisely, a geometric change that brings about a discontinuity in the mixing time required for an initial probability distribution on the configuration space to reach the steady state is conjectured to be related to the onset of a phase transition in the thermodynamic limit. This conjecture is tested by evaluating the diffusion diameter and ε-mixing time of the configuration spaces of hard-disk and hard-sphere systems of increasing size. Explicit geometries are constructed for the configuration spaces of these systems and numerical evidence suggests that a discontinuity in the ε-mixing time coincides with the solid-fluid phase transition in the thermodynamic limit.
Collapse
Affiliation(s)
- O B Eriçok
- Materials Science and Engineering, University of California, Davis, California 95616, USA
| | - J K Mason
- Materials Science and Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
10
|
Sheydaafar Z, Dyre JC, Schrøder TB. Scaling Properties of Liquid Dynamics Predicted from a Single Configuration: Small Rigid Molecules. J Phys Chem B 2023; 127:3478-3487. [PMID: 37040433 DOI: 10.1021/acs.jpcb.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant to a good approximation. There are two main ways to trace out isomorphs, the configurational-adiabat method and the direct-isomorph-check method. Recently a new method based on the scaling properties of forces was introduced and shown to work very well for atomic systems [T. B. Schrøder, Phys. Rev. Lett. 2022, 129, 245501]. A unique feature of this method is that it only requires a single equilibrium configuration for tracing out an isomorph. We here test generalizations of this method to molecular systems and compare to simulations of three simple molecular models: the asymmetric dumbbell model of two Lennard-Jones spheres, the symmetric inverse-power-law dumbbell model, and the Lewis-Wahnström o-terphenyl model. We introduce and test two force-based and one torque-based methods, all of which require just a single configuration for tracing out an isomorph. Overall, the method based on requiring invariant center-of-mass reduced forces works best.
Collapse
Affiliation(s)
- Zahraa Sheydaafar
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
11
|
Ingebrigtsen TS, Dyre JC. Even Strong Energy Polydispersity Does Not Affect the Average Structure and Dynamics of Simple Liquids. J Phys Chem B 2023; 127:2837-2846. [PMID: 36926946 DOI: 10.1021/acs.jpcb.3c00346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Size-polydisperse liquids have become standard models for avoiding crystallization, thereby enabling studies of supercooled liquids and glasses formed, e.g., by colloidal systems. Purely energy-polydisperse liquids have been studied much less, but provide an interesting alternative. We here study numerically the difference in structure and dynamics obtained by introducing these two kinds of polydispersity into systems of particles interacting via the Lennard-Jones and EXP pair potentials. To a very good approximation, the average pair structure and dynamics are unchanged even for strong energy polydispersity, which is not the case for size-polydisperse systems. When the system at extreme energy polydispersity undergoes a continuous phase separation into lower and higher particle-energy regions whose structure and dynamics are different from the average, the average structure and dynamics are still virtually the same as for the monodisperse system. Our findings are consistent with the fact that the distribution of forces on the individual particles do not change when energy polydispersity is introduced, while they do change in the case of size polydispersity. A theoretical explanation remains to be found, however.
Collapse
Affiliation(s)
- Trond S Ingebrigtsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Hirschmann F, Lopez H, Roosen-Runge F, Seydel T, Schreiber F, Oettel M. Effects of flexibility in coarse-grained models for bovine serum albumin and immunoglobulin G. J Chem Phys 2023; 158:084112. [PMID: 36859072 DOI: 10.1063/5.0132493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We construct a coarse-grained, structure-based, low-resolution, 6-bead flexible model of bovine serum albumin (BSA, PDB: 4F5S), which is a popular example of a globular protein in biophysical research. The model is obtained via direct Boltzmann inversion using all-atom simulations of a single molecule, and its particular form is selected from a large pool of 6-bead coarse-grained models using two suitable metrics that quantify the agreement in the distribution of collective coordinates between all-atom and coarse-grained Brownian dynamics simulations of solutions in the dilute limit. For immunoglobulin G (IgG), a similar structure-based 12-bead model has been introduced in the literature [Chaudhri et al., J. Phys. Chem. B 116, 8045 (2012)] and is employed here to compare findings for the compact BSA molecule and the more anisotropic IgG molecule. We define several modified coarse-grained models of BSA and IgG, which differ in their internal constraints and thus account for a variation of flexibility. We study denser solutions of the coarse-grained models with purely repulsive molecules (achievable by suitable salt conditions) and address the effect of packing and flexibility on dynamic and static behavior. Translational and rotational self-diffusivity is enhanced for more elastic models. Finally, we discuss a number of effective sphere sizes for the BSA molecule, which can be defined from its static and dynamic properties. Here, it is found that the effective sphere diameters lie between 4.9 and 6.1 nm, corresponding to a relative spread of about ±10% around a mean of 5.5 nm.
Collapse
Affiliation(s)
- Frank Hirschmann
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hender Lopez
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Grangegorman D07 ADY7, Ireland
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | - Tilo Seydel
- Institut Max von Laue-Paul Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Young JM, Bell IH, Harvey AH. Entropy scaling of viscosity for molecular models of molten salts. J Chem Phys 2023; 158:024502. [PMID: 36641388 DOI: 10.1063/5.0127250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Entropy scaling relates dynamic and thermodynamic properties by reducing the viscosity to a function of only the residual entropy. Molecular simulations are used to investigate the entropy scaling of the viscosity of three models of sodium chloride and five monovalent salts. Even though the correlation between the potential energy and the virial is weak, entropy scaling applies at liquid densities for all models and salts investigated. At lower densities, entropy scaling breaks down due to the formation of ion pairs and chains. Entropy scaling can be used to develop more extendable correlations for the dynamic properties of molten salts.
Collapse
Affiliation(s)
- Jeffrey M Young
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Allan H Harvey
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
14
|
Jiang Y, Weeks ER, Bailey NP. Isomorphs in sheared binary Lennard-Jones glass: Transient response. Phys Rev E 2023; 107:014610. [PMID: 36797950 DOI: 10.1103/physreve.107.014610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
We have studied shear deformation of binary Lennard-Jones glasses to investigate the extent to which the transient part of the stress strain curves is invariant when the thermodynamic state point is varied along an isomorph. Shear deformations were carried out on glass samples of varying stability, determined by cooling rate, and at varying strain rates, at state points deep in the glass. Density changes up to and exceeding a factor of two were made. We investigated several different methods for generating isomorphs but none of the previously developed methods could generate sufficiently precise isomorphs given the large density changes and nonequilibrium situation. Instead, the temperatures for these higher densities were chosen to give state points isomorphic to the starting state point by requiring the steady-state flow stress for isomorphic state points to be invariant in reduced units. In contrast to the steady-state flow stress, we find that the peak stress on the stress strain curve is not invariant. The peak stress decreases by a few percent for each ten percent increase in density, although the differences decrease with increasing density. Analysis of strain profiles and nonaffine motion during the transient phase suggests that the root of the changes in peak stress is a varying tendency to form shear bands, with the largest tendency occurring at the lowest densities. We suggest that this reflects the effective steepness of the potential; a higher effective steepness gives a greater tendency to form shear bands.
Collapse
Affiliation(s)
- Yonglun Jiang
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Nicholas P Bailey
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
15
|
Thermal conductivity prediction of pure refrigerants and mixtures based on entropy-scaling concept. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Li X, Kang K, Gu Y, Wang X. Viscosity prediction of pure refrigerants applying the residual entropy scaling theory coupled with a “Generalized Chart” parametrization method for the Statistical Associating Fluid Theory. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Attia E, Dyre JC, Pedersen UR. Comparing four hard-sphere approximations for the low-temperature WCA melting line. J Chem Phys 2022; 157:034502. [DOI: 10.1063/5.0097593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By combining interface-pinning simulations with numerical integration of the Clausius–Clapeyron equation, we accurately determine the melting-line coexistence pressure and fluid/crystal densities of the Weeks–Chandler–Andersen system, covering four decades of temperature. The data are used for comparing the melting-line predictions of the Boltzmann, Andersen–Weeks–Chandler, Barker–Henderson, and Stillinger hard-sphere approximations. The Andersen–Weeks–Chandler and Barker–Henderson theories give the most accurate predictions, and they both work excellently in the zero-temperature limit for which analytical expressions are derived here.
Collapse
Affiliation(s)
- Eman Attia
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Ulf R. Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
18
|
Bell I, Fingerhut R, Vrabec J, Costigliola L. Connecting Entropy Scaling and Density Scaling. J Chem Phys 2022; 157:074501. [DOI: 10.1063/5.0097088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is shown that the residual entropy (entropy minus that of the ideal gas at the same temperature and density) is mostly synonymous with the independent variable of density scaling, identifying a direct link between these two approaches. The residual entropy and the effective hardness of interaction (itself a derivative at constant residual entropy) are studied for the Lennard-Jones monomer and dimer as well as a range of rigid molecular models for carbon dioxide. It is observed that the density scaling exponent appears to be related to the two-body interactions in the dilute-gas limit.
Collapse
Affiliation(s)
- Ian Bell
- National Institute of Standards and Technology Applied Chemicals and Materials Division, United States of America
| | | | - Jadran Vrabec
- Process Engineering, Technical University of Berlin, Germany
| | | |
Collapse
|
19
|
Abstract
Active-matter systems feature discrete particles that can convert stored or ambient free energy into motion. To realize the engineering potential of active matter, there is a strong need for predictive and theoretically grounded techniques for describing transport in these systems. In this work, we perform molecular-dynamics (MD) simulations of a model active-matter system, in which we vary the total fraction of active particles (0.01 ≤ ϕ ≤ 0.5) as well as the degree of activity of the active particles. These simulations reveal a fascinating array of transport phenomena, including activity-enhanced diffusion coefficients. By adapting an existing result for binary (inactive) fluids, we demonstrate the existence of an excess entropy scaling relation in an active system. This relationship is well supported by our MD results and establishes a new connection between transport (dynamics) and structure (statics) in active matter, a promising step for predictive and generalizable models of other transport phenomena in such systems.
Collapse
Affiliation(s)
- S Arman Ghaffarizadeh
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gerald J Wang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
Mehri S, Dyre JC, Ingebrigtsen TS. Hidden scale invariance in the Gay-Berne model. Phys Rev E 2022; 105:064703. [PMID: 35854604 DOI: 10.1103/physreve.105.064703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
This paper presents a numerical study of the Gay-Berne liquid crystal model with parameters corresponding to calamitic (rod-shaped) molecules. The focus is on the isotropic and nematic phases at temperatures above unity, where we find strong correlations between the virial and potential-energy thermal fluctuations, reflecting the hidden scale invariance symmetry. This implies the existence of isomorphs, which are curves in the thermodynamic phase diagram of approximately invariant physics. We study numerically one isomorph in the isotropic phase and one in the nematic phase. In both cases, good invariance of the dynamics is demonstrated via data for the mean-square displacement and the reduced-unit time-autocorrelation functions of the velocity, angular velocity, force, torque, and first- and second-order Legendre polynomial orientational order parameters. Deviations from isomorph invariance are observed at short times for the orientational time-autocorrelation functions, which reflects the fact that the moment of inertia is assumed to be constant and thus not isomorph-invariant in reduced units. Structural isomorph invariance is demonstrated from data for the radial distribution functions of the molecules and their orientations. For comparison, all quantities were also simulated along an isochore of similar temperature variation, in which case invariance is not observed. We conclude that the thermodynamic phase diagram of the calamitic Gay-Berne model is essentially one-dimensional in the studied regions as predicted by isomorph theory, a fact that potentially allows for simplifications of future theories and numerical studies.
Collapse
Affiliation(s)
- Saeed Mehri
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Trond S Ingebrigtsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
21
|
Munguía-Valadez J, Chávez-Rojo MA, Sambriski EJ, Moreno-Razo JA. The generalized continuous multiple step (GCMS) potential: model systems and benchmarks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:184002. [PMID: 35090143 DOI: 10.1088/1361-648x/ac4fe8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The generalized continuous multiple step (GCMS) potential is presented in this work. Its flexible form allows forrepulsiveand/orattractivecontributions to be encoded through adjustable energy and length scales. The GCMS interaction provides a continuous representation of square-well, square-shoulder potentials and their variants for implementation in computer simulations. A continuous and differentiable energy representation is required to derive forces in conventional simulation algorithms. Molecular dynamics simulations are of particular interest when considering the dynamic properties of a system. The GCMS potential can mimic other interactions with a judicious choice of parameters due to the versatile sigmoid form. In this study, our benchmarks for the GCMS representation include triangular, Yukawa, Franzese, and Lennard-Jones potentials. Comparisons made with published data on volumetric phase diagrams, liquid structure, and diffusivity from model systems are in excellent agreement.
Collapse
Affiliation(s)
- Jorge Munguía-Valadez
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City 09340 Mexico
| | - Marco Antonio Chávez-Rojo
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua, Chihuahua 31125, Mexico
| | - Edward John Sambriski
- Department of Chemistry, Delaware Valley University, 700 East Butler Avenue, Doylestown, PA 18901 United States of America
| | - José Antonio Moreno-Razo
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City 09340 Mexico
| |
Collapse
|
22
|
Zhou Y, Mei B, Schweizer KS. Activated Relaxation in Supercooled Monodisperse Atomic and Polymeric WCA Fluids: Simulation and ECNLE Theory . J Chem Phys 2022; 156:114901. [DOI: 10.1063/5.0079221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We combine simulation and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to study the activated relaxation in monodisperse atomic and polymeric WCA liquids over a wide range of temperatures and densities in the supercooled regime under isochoric conditions. By employing novel crystal-avoiding simulations, metastable equilibrium dynamics is probed in the absence of complications associated with size polydispersity. Based on highly accurate structural input from integral equation theory, ECNLE theory is found to describe well the simulated density and temperature dependences of the alpha relaxation time of atomic fluids using a single system-specific parameter, ac, that reflects the nonuniversal relative importance of the local cage and collective elastic barriers. For polymer fluids, the explicit dynamical effect of local chain connectivity is modeled at the fundamental dynamic free energy level based on a different parameter, Nc, that quantifies the degree of intramolecular correlation of bonded segment activated barrier hopping. For the flexible chain model studied, a physically intuitive value of Nc≈2 results in good agreement between simulation and theory. A direct comparison between atomic and polymeric systems reveals chain connectivity can speed up activated segmental relaxation due to weakening of equilibrium packing correlations, but can slow down relaxation due to local bonding constraints. The empirical thermodynamic scaling idea for the alpha time is found to work well at high densities or temperatures, but fails when both density and temperature are low. The rich and subtle behaviors revealed from simulation for atomic and polymeric WCA fluids are all well captured by ECNLE theory.
Collapse
Affiliation(s)
- Yuxing Zhou
- UIUC, University of Illinois at Urbana-Champaign Department of Materials Science and Engineering, United States of America
| | - Baicheng Mei
- University of Illinois at Urbana-Champaign Department of Materials Science and Engineering, United States of America
| | - Kenneth S. Schweizer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
23
|
Li N, Wang XH, Gao N, Chen GM. Simple Direct Relationship between Scaled Viscosity and a Dimensionless Calorimetric Parameter for Saturated Liquids. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Li
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- NingboTech University, Ningbo 315100, China
| | - X. H. Wang
- Fluids and Thermal Engineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - N. Gao
- NingboTech University, Ningbo 315100, China
| | - G. M. Chen
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- NingboTech University, Ningbo 315100, China
| |
Collapse
|
24
|
Russo J, Leoni F, Martelli F, Sciortino F. The physics of empty liquids: from patchy particles to water. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:016601. [PMID: 34905739 DOI: 10.1088/1361-6633/ac42d9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Empty liquids represent a wide class of materials whose constituents arrange in a random network through reversible bonds. Many key insights on the physical properties of empty liquids have originated almost independently from the study of colloidal patchy particles on one side, and a large body of theoretical and experimental research on water on the other side. Patchy particles represent a family of coarse-grained potentials that allows for a precise control of both the geometric and the energetic aspects of bonding, while water has arguably the most complex phase diagram of any pure substance, and a puzzling amorphous phase behavior. It was only recently that the exchange of ideas from both fields has made it possible to solve long-standing problems and shed new light on the behavior of empty liquids. Here we highlight the connections between patchy particles and water, focusing on the modelling principles that make an empty liquid behave like water, including the factors that control the appearance of thermodynamic and dynamic anomalies, the possibility of liquid-liquid phase transitions, and the crystallization of open crystalline structures.
Collapse
Affiliation(s)
- John Russo
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Leoni
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Abstract
The fundamental relationships between the structure and properties of liquids are far from being well understood. For instance, the structural origins of many liquid anomalies still remain unclear, but liquid-liquid transitions (LLT) are believed to hold a key. However, experimental demonstrations of LLTs have been rather challenging. Here, we report experimental and theoretical evidence of a second-order-like LLT in molten tin, one which favors a percolating covalent bond network at high temperatures. The observed structural transition originates from the fluctuating metallic/covalent behavior of atomic bonding, and consequently a new paradigm of liquid structure emerges. The liquid structure, described in the form of a folded network, bridges two well-established structural models for disordered systems, i.e., the random packing of hard-spheres and a continuous random network, offering a large structural midground for liquids and glasses. Our findings provide an unparalleled physical picture of the atomic arrangement for a plethora of liquids, shedding light on the thermodynamic and dynamic anomalies of liquids but also entailing far-reaching implications for studying liquid polyamorphism and dynamical transitions in liquids. Unraveling the structural origin of liquid anomalies remains a challenging topic. Xu et al. propose a folded-network structural model for molten tin and provide insights into the observed second-order-like structural transition.
Collapse
|
26
|
Lucco Castello F, Tolias P. Bridge functions of classical one-component plasmas. Phys Rev E 2022; 105:015208. [PMID: 35193199 DOI: 10.1103/physreve.105.015208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In a recent paper, Lucco Castello et al. [arXiv:2107.03537] performed systematic extractions of classical one-component plasma bridge functions from molecular dynamics simulations and provided an accurate parametrization that was incorporated in their isomorph-based empirically modified hypernetted chain approach for Yukawa one-component plasmas. Here the extraction technique and parametrization strategy are described in detail, while the deficiencies of earlier efforts are discussed. The structural and thermodynamic predictions of the updated version of the integral equation theory approach are compared with extensive available simulation results revealing a truly unprecedented level of accuracy in the entire dense liquid region of the Yukawa phase diagram.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
27
|
Knudsen S, Todd BD, Dyre JC, Hansen JS. Generalized hydrodynamics of the Lennard-Jones liquid in view of hidden scale invariance. Phys Rev E 2021; 104:054126. [PMID: 34942805 DOI: 10.1103/physreve.104.054126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
In recent years lines along which structure and dynamics are invariant to a good approximation, so-called isomorphs, have been identified in the thermodynamic phase diagrams of several model liquids and solids. This paper reports computer simulation data of the transverse and longitudinal collective dynamics at different length scales along an isomorph of the Lennard-Jones system. Our findings are compared to corresponding results along an isotherm and an isochore. Confirming the theoretical prediction, the reduced-unit dynamics of the transverse momentum density is invariant to a good approximation along the isomorph on all time and length scales. Likewise, the wave-vector dependent shear-stress autocorrelation function is found to be isomorph invariant (with minor deviations at very short times). A similar invariance is not seen along the isotherm or the isochore. Using a spatially nonlocal hydrodynamic model for the transverse momentum-density time-autocorrelation function, the macroscopic shear viscosity and its wave dependence are determined, demonstrating that the shear viscosity is isomorphic invariant on all length scales studied. This analysis implies the existence of a length scale that is isomorph invariant in reduced units, i.e., which characterizes each isomorph. The transverse sound-wave velocity, the Maxwell relaxation time, and the rigidity shear modulus are also isomorph invariant. In contrast to the isomorph invariance of all aspects of the transverse dynamics, the reduced-unit dynamics of the mass density is not invariant on length scales longer than the interparticle distance. By fitting to a generalized hydrodynamic model, we extract values for the wave-vector-dependent thermal diffusion coefficient, sound attenuation coefficient, and adiabatic sound velocity. The isomorph variation of these quantities in reduced units on long length scales can be eliminated by scaling with the density-scaling exponent, a fundamental quantity in the isomorph theory framework; this is an empirical observation that remains to be explained theoretically.
Collapse
Affiliation(s)
- Solvej Knudsen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.,Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawtorn, Victoria 3122, Australia
| | - B D Todd
- Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawtorn, Victoria 3122, Australia
| | - Jeppe C Dyre
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - J S Hansen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
28
|
Eriçok OB, Ganesan K, Mason JK. Configuration spaces of hard spheres. Phys Rev E 2021; 104:055304. [PMID: 34942829 DOI: 10.1103/physreve.104.055304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/28/2021] [Indexed: 11/07/2022]
Abstract
Hard sphere systems are often used to model simple fluids. The configuration spaces of hard spheres in a three-dimensional torus modulo various symmetry groups are comparatively simple and could provide valuable information about the nature of phase transitions. Specifically, the topological changes in the configuration space as a function of packing fraction have been conjectured to be related to the onset of first-order phase transitions. The critical configurations for 1 to 12 spheres are sampled using a Morse-theoretic approach, and they are available in an online, interactive database. Explicit triangulations are constructed for the configuration spaces of the two sphere system, and their topological and geometric properties are studied. The critical configurations are found to be associated with geometric changes to the configuration space that connect previously distant regions and reduce the configuration space diameter as measured by the commute time and diffusion distances. The number of such critical configurations around the packing fraction of the solid-liquid phase transition increases exponentially with the number of spheres, suggesting that the onset of the first-order phase transition in the thermodynamic limit is associated with a discontinuity in the configuration space diameter.
Collapse
Affiliation(s)
- O B Eriçok
- Materials Science and Engineering, University of California, Davis, California, 95616, USA
| | - K Ganesan
- Materials Science and Engineering, University of California, Davis, California, 95616, USA
| | - J K Mason
- Materials Science and Engineering, University of California, Davis, California, 95616, USA
| |
Collapse
|
29
|
Khrapak SA, Khrapak AG. Excess entropy and Stokes-Einstein relation in simple fluids. Phys Rev E 2021; 104:044110. [PMID: 34781514 DOI: 10.1103/physreve.104.044110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022]
Abstract
The Stokes-Einstein (SE) relation between the self-diffusion and shear viscosity coefficients operates in sufficiently dense liquids not too far from the liquid-solid phase transition. By considering four simple model systems with very different pairwise interaction potentials (Lennard-Jones, Coulomb, Debye-Hückel or screened Coulomb, and the hard sphere limit) we identify where exactly on the respective phase diagrams the SE relation holds. It appears that the reduced excess entropy s_{ex} can be used as a suitable indicator of the validity of the SE relation. In all cases considered the onset of SE relation validity occurs at approximately s_{ex}≲-2. In addition, we demonstrate that the line separating gaslike and liquidlike fluid behaviours on the phase diagram is roughly characterized by s_{ex}≃-1.
Collapse
Affiliation(s)
- S A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
30
|
Saliou A, Jarry P, Jakse N. Excess entropy scaling law: A potential energy landscape view. Phys Rev E 2021; 104:044128. [PMID: 34781503 DOI: 10.1103/physreve.104.044128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
The relationship between excess entropy and diffusion is revisited by means of large-scale computer simulation combined to supervised learning approach to determine the excess entropy for the Lennard-Jones potential. Results reveal a strong correlation with the properties of the potential energy landscape (PEL). In particular the exponential law holding in the liquid is seen to be linked with the landscape-influenced regime of the PEL whereas the fluidlike power-law corresponds to the free diffusion regime.
Collapse
Affiliation(s)
- Anthony Saliou
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
| | - Philippe Jarry
- C-TEC, Parc Economique Centr'alp, 725 rue Aristide Bergès, CS10027, Voreppe 38341 cedex, France
| | - Noel Jakse
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
| |
Collapse
|
31
|
Mei B, Zhou Y, Schweizer KS. Long Wavelength Thermal Density Fluctuations in Molecular and Polymer Glass-Forming Liquids: Experimental and Theoretical Analysis under Isobaric Conditions. J Phys Chem B 2021; 125:12353-12364. [PMID: 34723527 DOI: 10.1021/acs.jpcb.1c06840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We establish via an in-depth analysis of experimental data that the dimensionless compressibility (proportional to the dimensionless amplitude of long wavelength thermal density fluctuations) of one-component normal and supercooled liquids of chemically complex nonpolar and weakly polar molecules and polymers follows extremely well a surprisingly simple and general temperature dependence over an exceptionally wide range of pressures and temperatures. A theoretical basis for this behavior is shown to exist in the venerable van der Waals model and its more modern interpretations. Although associated hydrogen-bonding (and to a lesser degree strongly polar) liquids display modestly more complex behavior, rather simple temperature and pressure dependences are also discovered. A new approach to collapse the temperature- and pressure-dependent dimensionless compressibility data onto a master curve is formulated that differs from the empirical thermodynamic scaling approach. As a practical matter, we also find that the dimensionless compressibility scales well as an inverse power law with temperature with an exponent that is system dependent and decreases with pressure. At very high pressures and low temperatures, the thermal liquid behavior appears to approach (but not reach) a repulsion-dominated random close packing limit. All these findings are relevant to our recent theoretical work on the problem of activated relaxation and vitrification of supercooled molecular and polymeric liquids.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuxing Zhou
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Mei B, Zhou Y, Schweizer KS. Experimental Tests of a Theoretically Predicted Noncausal Correlation between Dynamics and Thermodynamics in Glass-forming Polymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuxing Zhou
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Dehlouz A, Privat R, Galliero G, Bonnissel M, Jaubert JN. Revisiting the Entropy-Scaling Concept for Shear-Viscosity Estimation from Cubic and SAFT Equations of State: Application to Pure Fluids in Gas, Liquid and Supercritical States. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aghilas Dehlouz
- École Nationale Supérieure des Industries Chimiques, Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, 1 rue Grandville, 54000 Nancy, France
- Gaztransport & Technigaz (GTT), 1 route de Versailles, 78470 Saint-Rémy-lès-Chevreuse, France
| | - Romain Privat
- École Nationale Supérieure des Industries Chimiques, Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, 1 rue Grandville, 54000 Nancy, France
| | - Guillaume Galliero
- E2S UPPA, CNRS Total Energies, LFCR UMR 5150, Université de Pau et des Pays de l’Adour 64000 Pau, France
| | - Marc Bonnissel
- Gaztransport & Technigaz (GTT), 1 route de Versailles, 78470 Saint-Rémy-lès-Chevreuse, France
| | - Jean-Noël Jaubert
- École Nationale Supérieure des Industries Chimiques, Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), Université de Lorraine, 1 rue Grandville, 54000 Nancy, France
| |
Collapse
|
34
|
Knudsen PA, Niss K, Bailey NP. Quantifying dynamical and structural invariance in a simple molten salt model. J Chem Phys 2021; 155:054506. [PMID: 34364358 DOI: 10.1063/5.0055794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent experimental results for the structure in the ionic liquid PYR14 +TFSI- have shown invariance in the main structure factor peak along curves of equal electrical conductivity [Hansen et al., Phys. Chem. Chem. Phys. 22, 14169 (2020)]. The charge peak decreases slightly with increasing temperature at fixed conductivity, however. For simple liquids, curves with invariant dynamics and structure, known as isomorphs, can be identified as configurational adiabats. While liquids with strong-Coulomb interactions do not have good isomorphs, ionic liquids could be an intermediate case with approximate isomorphs along which some aspects of structure and dynamics are invariant. We study a simple molten salt model using molecular dynamics simulations to test this hypothesis. Simple measures of structure and dynamics are investigated along with one transport property, the shear viscosity. We find that there is a substantial degree of invariance of the self-intermediate scattering function, the mean square displacement, and the viscosity along configurational adiabats over a wide range of densities for the three adiabats simulated. The density range studied is more than a factor of two and extends from the strong-Coulomb regime at low densities to the weak-Coulomb regime at high densities. The structure is not invariant over the full range of density, but in the weak-Coulomb regime, we see behavior similar to that seen experimentally over density changes of order 15%. In view of the limited structural invariance but substantial dynamical invariance, we designate the configurational adiabats as isodynes.
Collapse
Affiliation(s)
- Peter A Knudsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, Roskilde DK-4000, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, Roskilde DK-4000, Denmark
| | - Nicholas P Bailey
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, Roskilde DK-4000, Denmark
| |
Collapse
|
35
|
Castello FL, Tolias P. Structure and thermodynamics of two-dimensional Yukawa liquids. Phys Rev E 2021; 103:063205. [PMID: 34271703 DOI: 10.1103/physreve.103.063205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic and structural properties of two-dimensional dense Yukawa liquids are studied with molecular dynamics simulations. The "exact" thermodynamic properties are simultaneously employed in an advanced scheme for the determination of an equation of state that shows an unprecedented level of accuracy for the internal energy, pressure, and isothermal compressibility. The "exact" structural properties are utilized to formulate a novel empirical correction to the hypernetted-chain approach that leads to a very high accuracy level in terms of static correlations and thermodynamics.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
36
|
López Flores L, Olais-Govea JM, Chávez-Páez M, Medina-Noyola M. Effect of attractions on the hard-sphere dynamic universality class. Phys Rev E 2021; 103:L050602. [PMID: 34134327 DOI: 10.1103/physreve.103.l050602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
The fundamental understanding of the dynamic and transport properties of liquids is crucial for the better processing of most materials. The usefulness of this understanding increases when it involves general scaling rules, such as the concept of the hard-sphere dynamic universality class, which provides a unifying scaling of the dynamics of soft-sphere repulsive systems. A relevant question is how far this concept extends to systems that also involve attractive interactions. To answer this question, in this work we performed systematic molecular and Brownian dynamics simulations with the Lennard-Jones system in a wide range of temperatures and densities and verify the extent to which its static and dynamic properties map onto those of the hard-sphere system. We determine that in most of the fluid regime, the Lennard-Jones liquid exhibits the same dynamic equivalence with the hard-sphere system as most purely repulsive fluids, thus establishing the degree of its inclusion in the hard-sphere dynamic universality class.
Collapse
Affiliation(s)
- Leticia López Flores
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, México.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - José Manuel Olais-Govea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eugenio Garza Sada 300, 78211 San Luis Potosí, San Luis Potosí, México.,Tecnologico de Monterrey, Writing Lab, TecLab, Vicerrectoría de Investigación y Transferencia de Tecnología, 64849 Monterrey, Nuevo León, México
| | - Martín Chávez-Páez
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, México
| | - Magdaleno Medina-Noyola
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
37
|
Khrapak SA, Khrapak AG. Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms. Phys Rev E 2021; 103:042122. [PMID: 34005910 DOI: 10.1103/physreve.103.042122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/07/2022]
Abstract
It is demonstrated that properly reduced transport coefficients (self-diffusion, shear viscosity, and thermal conductivity) of Lennard-Jones fluids along isotherms exhibit quasi-universal scaling on the density divided by its value at the freezing point. Moreover, this scaling is closely related to the density scaling of transport coefficients of hard-sphere fluids. The Stokes-Einstein relation without the hydrodynamic diameter is valid in the dense fluid regime. The lower density boundary of its validity can serve as a practical demarcation line between gaslike and liquidlike regimes.
Collapse
Affiliation(s)
- S A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
38
|
Singh AN, Dyre JC, Pedersen UR. Solid–liquid coexistence of neon, argon, krypton, and xenon studied by simulations. J Chem Phys 2021; 154:134501. [DOI: 10.1063/5.0045398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aditya N. Singh
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53703, USA
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P. O. Box 260, DK-4000 Roskilde, Denmark
| | - Ulf R. Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P. O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
39
|
Rahman M, Carter BMGD, Saw S, Douglass IM, Costigliola L, Ingebrigtsen TS, Schrøder TB, Pedersen UR, Dyre JC. Isomorph Invariance of Higher-Order Structural Measures in Four Lennard-Jones Systems. Molecules 2021; 26:molecules26061746. [PMID: 33804670 PMCID: PMC8003765 DOI: 10.3390/molecules26061746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
In the condensed liquid phase, both single- and multicomponent Lennard-Jones (LJ) systems obey the "hidden-scale-invariance" symmetry to a good approximation. Defining an isomorph as a line of constant excess entropy in the thermodynamic phase diagram, the consequent approximate isomorph invariance of structure and dynamics in appropriate units is well documented. However, although all measures of the structure are predicted to be isomorph invariant, with few exceptions only the radial distribution function (RDF) has been investigated. This paper studies the variation along isomorphs of the nearest-neighbor geometry quantified by the occurrence of Voronoi structures, Frank-Kasper bonds, icosahedral local order, and bond-orientational order. Data are presented for the standard LJ system and for three binary LJ mixtures (Kob-Andersen, Wahnström, NiY2). We find that, while the nearest-neighbor geometry generally varies significantly throughout the phase diagram, good invariance is observed along the isomorphs. We conclude that higher-order structural correlations are no less isomorph invariant than is the RDF.
Collapse
Affiliation(s)
- Mahajabin Rahman
- Department of Physics, Emory University, Atlanta, GA 30322, USA;
| | | | - Shibu Saw
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Ian M. Douglass
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Lorenzo Costigliola
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Trond S. Ingebrigtsen
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Thomas B. Schrøder
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Ulf R. Pedersen
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
| | - Jeppe C. Dyre
- “Glass and Time”, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark; (S.S.); (I.M.D.); (L.C.); (T.S.I.); (T.B.S.); (U.R.P.)
- Correspondence:
| |
Collapse
|
40
|
Treffenstädt LL, Schmidt M. Universality in Driven and Equilibrium Hard Sphere Liquid Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:058002. [PMID: 33605743 DOI: 10.1103/physrevlett.126.058002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that the time evolution of the van Hove dynamical pair correlation function is governed by adiabatic forces that arise from the free energy and by superadiabatic forces that are induced by the flow of the van Hove function. The superadiabatic forces consist of drag, viscous, and structural contributions, as occur in active Brownian particles, in liquids under shear and in lane forming mixtures. For hard sphere liquids, we present a power functional theory that predicts these universal force fields in quantitative agreement with our Brownian dynamics simulation results.
Collapse
Affiliation(s)
- Lucas L Treffenstädt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
41
|
Lucco Castello F, Tolias P. Theoretical Estimate of the Glass Transition Line of Yukawa One-Component Plasmas. Molecules 2021; 26:molecules26030669. [PMID: 33525346 PMCID: PMC7865523 DOI: 10.3390/molecules26030669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
The mode coupling theory of supercooled liquids is combined with advanced closures to the integral equation theory of liquids in order to estimate the glass transition line of Yukawa one-component plasmas from the unscreened Coulomb limit up to the strong screening regime. The present predictions constitute a major improvement over the current literature predictions. The calculations confirm the validity of an existing analytical parameterization of the glass transition line. It is verified that the glass transition line is an approximate isomorphic curve and the value of the corresponding reduced excess entropy is estimated. Capitalizing on the isomorphic nature of the glass transition line, two structural vitrification indicators are identified that allow a rough estimate of the glass transition point only through simple curve metrics of the static properties of supercooled liquids. The vitrification indicators are demonstrated to be quasi-universal by an investigation of hard sphere and inverse power law supercooled liquids. The straightforward extension of the present results to bi-Yukawa systems is also discussed.
Collapse
|
42
|
Lucco Castello F, Tolias P, Dyre JC. Testing the isomorph invariance of the bridge functions of Yukawa one-component plasmas. J Chem Phys 2021; 154:034501. [PMID: 33499616 DOI: 10.1063/5.0036226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void with the Ornstein-Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - J C Dyre
- Glass and Time, IMFUFA, Roskilde University, Roskilde DK-4000, Denmark
| |
Collapse
|
43
|
Ingebrigtsen TS, Schrøder TB, Dyre JC. Hidden Scale Invariance in Polydisperse Mixtures of Exponential Repulsive Particles. J Phys Chem B 2021; 125:317-327. [PMID: 33369412 DOI: 10.1021/acs.jpcb.0c09726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polydisperse systems of particles interacting by the purely repulsive exponential (EXP) pair potential are studied in regard to how structure and dynamics vary along isotherms, isochores, and isomorphs. The sizable size polydispersities of 23%, 29%, 35%, and 40%, as well as energy polydispersity 35%, were considered. For each system an isomorph was traced out covering about one decade in density. For all systems studied, the structure and dynamics vary significantly along the isotherms and isochores but are invariant to a good approximation along the isomorphs. We conclude that the single-component EXP system's hidden scale invariance (implying isomorph invariance of structure and dynamics) is maintained even when a sizable polydispersity is introduced into the system.
Collapse
Affiliation(s)
- Trond S Ingebrigtsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
44
|
Saw S, Dyre JC. Structure of the Lennard-Jones liquid estimated from a single simulation. Phys Rev E 2021; 103:012110. [PMID: 33601502 DOI: 10.1103/physreve.103.012110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 11/07/2022]
Abstract
Combining the recent Piskulich-Thompson approach [Z. A. Piskulich and W. H. Thompson, J. Chem. Phys. 152, 011102 (2020)JCPSA60021-960610.1063/1.5135932] with isomorph theory, from a single simulation the structure of a single-component Lennard-Jones (LJ) system is obtained at an arbitrary state point in almost the whole liquid region of the temperature-density phase diagram. The LJ system exhibits two temperature ranges where the van't Hoff assumption that energetic and entropic forces are temperature independent is valid to a good approximation. A method to evaluate the structure at an arbitrary state point along an isochore from the knowledge of structures at two temperatures on the isochore is also discussed. We argue that, in general, the structure of any hidden scale-invariant system obeying the van't Hoff assumption in the whole range of temperatures can be determined in the whole liquid region of the phase diagram from a single simulation.
Collapse
Affiliation(s)
- Shibu Saw
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
45
|
Gish CM, Nan K, Hoy RS. Does the Sastry transition control cavitation in simple liquids? J Chem Phys 2020; 153:184504. [DOI: 10.1063/5.0023236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Caitlin M. Gish
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Kai Nan
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S. Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
46
|
Bell IH. Entropy Scaling of Viscosity - II: Predictive Scheme for Normal Alkanes. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2020; 65:10.1021/acs.jced.0c00749. [PMID: 34121765 PMCID: PMC8191377 DOI: 10.1021/acs.jced.0c00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a residual entropy value 6/10 of the way between the critical point and a value of -2/3 of Boltzmann's constant is shown to collapse the scaled viscosity for the family of normal alkanes. Based on this approach, a nearly universal correlation is proposed that can reproduce 95% of the experimental data for normal alkanes within ±18% (without removal of clearly erroneous data). This universal correlation has no new fluid-specific empirical parameters and is based on experimentally accessible values. This collapse is shown to be valid to a residual entropy half way between the critical point and the triple point, beyond which the macroscopically-scaled viscosity has a super-exponential dependence on residual entropy, terminating at the triple point. A key outcome of this study is a better understanding of entropy scaling for fluids with intramolecular degrees of freedom. A study of the transport and thermodynamic properties at the triple point rounds out the analysis.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305
| |
Collapse
|
47
|
Abstract
This paper generalizes isomorph theory to systems that are not in thermal equilibrium. The systems are assumed to be R-simple, i.e., to have a potential energy that as a function of all particle coordinates R obeys the hidden-scale-invariance condition U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). "Systemic isomorphs" are introduced as lines of constant excess entropy in the phase diagram defined by density and systemic temperature, which is the temperature of the equilibrium state point with the average potential energy equal to U(R). The dynamics is invariant along a systemic isomorph if there is a constant ratio between the systemic and the bath temperature. In thermal equilibrium, the systemic temperature is equal to the bath temperature and the original isomorph formalism is recovered. The new approach rationalizes within a consistent framework previously published observations of isomorph invariance in simulations involving nonlinear steady-state shear flows, zero-temperature plastic flows, and glass-state isomorphs. This paper relates briefly to granular media, physical aging, and active matter. Finally, we discuss the possibility that the energy unit defining the reduced quantities should be based on the systemic rather than the bath temperature.
Collapse
Affiliation(s)
- Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
48
|
Bell IH, Galliero G, Delage-Santacreu S, Costigliola L. An entropy scaling demarcation of gas- and liquid-like fluid behaviors. J Chem Phys 2020; 152:191102. [PMID: 33687260 DOI: 10.1063/1.5143854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we propose a generic and simple definition of a line separating gas-like and liquid-like fluid behaviors from the standpoint of shear viscosity. This definition is valid even for fluids such as the hard sphere and the inverse power law that exhibit a unique fluid phase. We argue that this line is defined by the location of the minimum of the macroscopically scaled viscosity when plotted as a function of the excess entropy, which differs from the popular Widom lines. For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at an excess entropy approximately equal to -2/3 times Boltzmann's constant and corresponds to points in the thermodynamic phase diagram for which the kinetic contribution to viscosity is approximately half of the total viscosity. For flexible Lennard-Jones chains, the excess entropy at the minimum is a linear function of the chain length. This definition opens a straightforward route to classify the dynamical behavior of fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Guillaume Galliero
- Universite de Pau et des Pays de l'Adour, e2s UPPA, TOTAL, CNRS, LFCR, UMR 5150, Laboratoire des fluides complexes et leurs reservoirs, Pau, France
| | - Stéphanie Delage-Santacreu
- Universite de Pau et des Pays de l'Adour, e2s UPPA, Laboratoire de Mathematiques et de leurs Applications de Pau (IPRA, CNRS UMR5142), Pau, France
| | - Lorenzo Costigliola
- Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
49
|
Bell IH. Effective hardness of interaction from thermodynamics and viscosity in dilute gases. J Chem Phys 2020; 152:164508. [PMID: 32357769 DOI: 10.1063/5.0007583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hardness of the effective inverse power law (IPL) potential, which can be obtained from thermodynamics or collision integrals, can be used to demonstrate similarities between thermodynamic and transport properties. This link is investigated for systems of increasing complexity (i.e., the EXP, square-well, Lennard-Jones, and Stockmayer potentials; ab initio results for small molecules; and rigid linear chains of Lennard-Jones sites). These results show that while the two approaches do not yield precisely the same values of effective IPL exponent, their qualitative behavior is intriguingly similar, offering a new way of understanding the effective interactions between molecules, especially at high temperatures. In both approaches, the effective hardness is obtained from a double-logarithmic temperature derivative of an effective area.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
50
|
Yungbluth JC, Medvedev GA, Savoie BM, Caruthers JM. Temperature and pressure dependence of the alpha relaxation in ortho-terphenyl. J Chem Phys 2020; 152:094504. [PMID: 33480716 DOI: 10.1063/1.5144283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular dynamics (MD) simulations of ortho-terphenyl using an all-atom model with the optimized potentials for liquid simulations (OPLS) force field were performed both in the high temperature Arrhenian region and at lower temperatures that include the onset of the super-Arrhenian region. From the MD simulations, the internal energy of both the equilibrium liquid and crystal was determined from 300 K to 600 K and at pressures from 0.1 MPa to 1 GPa. The translational and rotational diffusivities were also determined at these temperatures and pressures for the equilibrium liquid. It is shown that within a small offset, the excess internal energy Ūx from the MD simulations is consistent with the experimentally determined excess internal energy reported earlier [Caruthers and Medvedev, Phys. Rev. Mater. 2, 055604, (2018)]. The MD mobility data {including extremely long-time 1 atm simulations from the study by Eastwood et al. [J. Phys. Chem. B 117, 12898, (2013)]} were combined with experimental data to form a unified dataset, where it was shown that in both the high temperature Arrhenian region and the lower temperature super-Arrhenian region, the mobility is a linear function of 1/Ūx(T,p), albeit with different proportionality constants. The transition between the Arrhenian and super-Arrhenian regions is relatively sharp at a critical internal energy Ūx α. The 1/Ūx(T,p) model is able to describe the mobility data over nearly 16 orders-of-magnitude. Other excess thermodynamic properties such as excess enthalpy and excess entropy (i.e., the Adam-Gibbs model) are unable to unify the pressure dependence of the mobility.
Collapse
Affiliation(s)
- Jack C Yungbluth
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Grigori A Medvedev
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - James M Caruthers
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|