1
|
Han W, Zhang R, Liu S, Zhang T, Yao X, Cao Y, Li J, Liu X, Li B. Recent Advances in Whiskers: Properties and Clinical Applications in Dentistry. Int J Nanomedicine 2024; 19:7071-7097. [PMID: 39045343 PMCID: PMC11265390 DOI: 10.2147/ijn.s471546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Whiskers are nanoscale, high-strength fibrous crystals with a wide range of potential applications in dentistry owing to their unique mechanical, thermal, electrical, and biological properties. They possess high strength, a high modulus of elasticity and good biocompatibility. Hence, adding these crystals to dental composites as reinforcement can considerably improve the mechanical properties and durability of restorations. Additionally, whiskers are involved in inducing the value-added differentiation of osteoblasts, odontogenic osteocytes, and pulp stem cells, and promoting the regeneration of alveolar bone, periodontal tissue, and pulp tissue. They can also enhance the mucosal barrier function, inhibit the proliferation of tumor cells, control inflammation, and aid in cancer prevention. This review comprehensively summarizes the classification, properties, growth mechanisms and preparation methods of whiskers and focuses on their application in dentistry. Due to their unique physicochemical properties, excellent biological properties, and nanoscale characteristics, whiskers show great potential for application in bone, periodontal, and pulp tissue regeneration. Additionally, they can be used to prevent and treat oral cancer and improve medical devices, thus making them a promising new material in dentistry.
Collapse
Affiliation(s)
- Wenze Han
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Shuzhi Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xuemin Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Yuxin Cao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Jiadi Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| |
Collapse
|
2
|
Hussain N, Gogoi P, Azhaganand VK, Shelke MV, Das MR. Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01229a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(0) nanoparticle-rGO composites exhibit excellent catalytic activity for the synthesis of symmetrical biaryls from arylboronic acids under microwave irradiation.
Collapse
Affiliation(s)
- Najrul Hussain
- Materials Science Division
- CSIR-North East Institute of Science and Technology
- Jorhat-785006
- India
- Academy of Scientific and Innovative Research
| | - Pranjal Gogoi
- Medicinal Chemistry Division
- CSIR-North East Institute of Science and Technology
- Jorhat-785006
- India
- Academy of Scientific and Innovative Research
| | - Vedi Kuyil Azhaganand
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Manjusha V. Shelke
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research
| | - Manash R. Das
- Materials Science Division
- CSIR-North East Institute of Science and Technology
- Jorhat-785006
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
3
|
Ma Y, Li J, Liu W, Shi Y. A large-scale fabrication of flower-like submicrometer-sized tungsten whiskers via metal catalysis. NANOSCALE RESEARCH LETTERS 2012; 7:325. [PMID: 22721415 PMCID: PMC3447737 DOI: 10.1186/1556-276x-7-325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
Tungsten powder mixed with an appropriate amount of nickel and iron powders is used as raw material to fabricate large-scale tungsten whisker-like structure. The morphology, microstructure and composition of the whisker-like tungsten are observed and tested by scanning electron microscope and FESEM, transmission electron microscopy, X-ray spectroscopy, and X-ray diffraction, respectively. The main component of the tungsten whisker-like structure is tungsten, which has the axial growth along the <100 > direction with large aspect ratio and possesses flower-like structure. Large-scale submicrometer-sized whisker-like tungsten was fabricated via vapor phase deposition approach with the aid of metal catalysts at 800°C by holding for 6 h in the appropriate atmosphere. The growth procedure of flower-like tungsten whisker is probably based on the vapor-liquid-solid mechanism at beginning of the formation of tungsten nuclei, then vapor-solid mechanism is dominant.
Collapse
Affiliation(s)
- Yunzhu Ma
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan Province, 410083, People’s Republic of China
| | - Jing Li
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan Province, 410083, People’s Republic of China
| | - Wensheng Liu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan Province, 410083, People’s Republic of China
| | - Yubin Shi
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan Province, 410083, People’s Republic of China
| |
Collapse
|