1
|
Saxton MJ. Wanted: a positive control for anomalous subdiffusion. Biophys J 2012; 103:2411-22. [PMID: 23260043 DOI: 10.1016/j.bpj.2012.10.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/23/2012] [Accepted: 10/10/2012] [Indexed: 11/25/2022] Open
Abstract
Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories.
Collapse
Affiliation(s)
- Michael J Saxton
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California, USA.
| |
Collapse
|
2
|
Collier CP, Simpson ML. Micro/nanofabricated environments for synthetic biology. Curr Opin Biotechnol 2011; 22:516-26. [PMID: 21636262 DOI: 10.1016/j.copbio.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints.
Collapse
Affiliation(s)
- C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
3
|
Simpson ML, Cummings PT. Fluctuations and correlations in physical and biological nanosystems: the tale is in the tails. ACS NANO 2011; 5:2425-2432. [PMID: 21456547 DOI: 10.1021/nn201011m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The inherently small system sizes involved imply that, in the absence of large applied fields designed to overwhelm them, fluctuations will play a major role in determining the response and functionality of nanoscale systems. Theoretical advances over the past two decades have provided fresh insight into fluctuations and their role at the nanoscale, even in the presence of arbitrarily large applied external fields. In contrast to traditional engineered systems, Nature's approach to nanotechnology is to embrace and to exploit fluctuations and noise to create adaptable, persistent, optimized functional architectures. We describe some of the mechanisms by which Nature exploits noise, with the goal of applying these lessons to engineered physical and chemical nanosystems. In particular, we emphasize the critical role of the tails of distributions of properties in both physical and biological nanosystems and their impact on system behavior.
Collapse
Affiliation(s)
- Michael L Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6494, USA.
| | | |
Collapse
|
4
|
Mehdipour H, Ostrikov K, Rider AE. Low- and high-temperature controls in carbon nanofiber growth in reactive plasmas. NANOTECHNOLOGY 2010; 21:455605. [PMID: 20947941 DOI: 10.1088/0957-4484/21/45/455605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A numerical growth model is used to describe the catalyzed growth of carbon nanofibers in the sheath of a low-temperature plasma. Using the model, the effects of variation in the plasma sheath parameters and substrate potential on the carbon nanofiber growth characteristics, such as the growth rate, the effective carbon flux to the catalyst surface, and surface coverages, have been investigated. It is shown that variations in the parameters, which change the sheath width, mainly affect the growth parameters at the low catalyst temperatures, whereas the other parameters such as the gas pressure, ion temperature, and percentages of the hydrocarbon and etching gases, strongly affect the carbon nanofiber growth at higher temperatures. The conditions under which the carbon nanofiber growth can still proceed under low nanodevice-friendly process temperatures have been formulated and summarized. These results are consistent with the available experimental results and can also be used for catalyzed growth of other high-aspect-ratio nanostructures in low-temperature plasmas.
Collapse
Affiliation(s)
- H Mehdipour
- Physics Department, Faculty of Science, Sahand University of Technology, Tabriz, Iran
| | | | | |
Collapse
|
5
|
Srijanto BR, Retterer ST, Fowlkes JD, Doktycz MJ. Nanostructured silicon membranes for control of molecular transport. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2010; 28:C6PC6P48-C6PC6P52. [PMID: 24932436 PMCID: PMC4043179 DOI: 10.1116/1.3518911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/27/2010] [Indexed: 05/11/2023]
Abstract
A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.
Collapse
Affiliation(s)
- Bernadeta R Srijanto
- Biosciences Division and Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
| | - Scott T Retterer
- Biosciences Division and Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
| | - Jason D Fowlkes
- Biosciences Division and Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
| | - Mitchel J Doktycz
- Biosciences Division and Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
| |
Collapse
|
6
|
Choi CK, Fowlkes JD, Retterer ST, Siuti P, Iyer S, Doktycz MJ. Surface charge- and space-dependent transport of proteins in crowded environments of nanotailored posts. ACS NANO 2010; 4:3345-55. [PMID: 20515056 PMCID: PMC2892340 DOI: 10.1021/nn901831q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including "supercharged" variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photobleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems.
Collapse
Affiliation(s)
- Chang Kyoung Choi
- Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931-1295
| | - Jason D. Fowlkes
- Center for Nanoscale Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Scott T. Retterer
- Center for Nanoscale Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Piro Siuti
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| | - Sukanya Iyer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| | - Mitchel J. Doktycz
- Center for Nanoscale Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
7
|
Retterer ST, Siuti P, Choi CK, Thomas DK, Doktycz MJ. Development and fabrication of nanoporous silicon-based bioreactors within a microfluidic chip. LAB ON A CHIP 2010; 10:1174-81. [PMID: 20390137 PMCID: PMC3076636 DOI: 10.1039/b921592a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Multi-scale lithography and cryogenic deep reactive ion etching techniques were used to create ensembles of nanoporous, picolitre volume, reaction vessels within a microfluidic system. The fabrication of these vessels is described and how this process can be used to tailor vessel porosity by controlling the width of slits that constitute the vessel pores is demonstrated. Control of pore size allows the containment of nucleic acids and enzymes that are the foundation of biochemical reaction systems, while allowing smaller reaction constituents to traverse the container membrane and continuously supply the reaction. In this work, a 5.4 kb DNA plasmid was retained within the reaction vessels and labeled under microfluidic control with ethidium bromide as an initial proof-of-principle. Subsequently, a coupled enzyme reaction, in which glucose oxidase (GOX) and horseradish peroxidase (HRP) were contained and fed with a substrate solution of glucose and Amplex Red to produce fluorescent resorufin, was carried out under microfluidic control and monitored using fluorescent microscopy. The fabrication techniques presented are broadly applicable and can be adapted to produce devices in which a variety of high aspect ratio, nanoporous silicon structures can be integrated within a microfluidic network. The devices shown here are amenable to being scaled in number and organized to implement more complex reaction systems for applications in sensing and actuation as well as fundamental studies of biological reaction systems.
Collapse
|
8
|
Fowlkes JD, Doktycz MJ, Rack PD. An optimized nanoparticle separator enabled by electron beam induced deposition. NANOTECHNOLOGY 2010; 21:165303. [PMID: 20351412 DOI: 10.1088/0957-4484/21/16/165303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.
Collapse
Affiliation(s)
- J D Fowlkes
- Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37381-6487, USA.
| | | | | |
Collapse
|