1
|
Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, Alazzam A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. NANOSCALE RESEARCH LETTERS 2023; 18:18. [PMID: 36800044 PMCID: PMC9936499 DOI: 10.1186/s11671-023-03792-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles. Gold and silver NPs, iron oxide NPs, quantum dots, and carbon and silica-based nanomaterials make up the bulk of the inorganic NPs. These NPs are prepared using a variety of top-down and bottom-up approaches. Microfluidics provide an attractive synthesis alternative and is advantageous compared to the conventional bulk methods. The microfluidic mixing-based production methods offer better control in achieving the desired size, morphology, shape, size distribution, and surface properties of the synthesized NPs. The technology also exhibits excellent process repeatability, fast handling, less sample usage, and yields greater encapsulation efficiencies. In this article, we provide a comprehensive review of the microfluidic-based passive and active mixing techniques for NP synthesis, and their latest developments. Additionally, a summary of microfluidic devices used for NP production is presented. Nonetheless, despite significant advancements in the experimental procedures, complete details of a nanoparticle-based system cannot be deduced from the experiments alone, and thus, multiscale computer simulations are utilized to perform systematic investigations. The work also details the most common multiscale simulation methods and their advancements in unveiling critical mechanisms involved in nanoparticle synthesis and the interaction of nanoparticles with other entities, especially in biomedical and therapeutic systems. Finally, an analysis is provided on the challenges in microfluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis, and hybrid formulations and devices.
Collapse
Affiliation(s)
- Abdulrahman Agha
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
- System on Chip Center, Khalifa University, Abu Dhabi, UAE
| | | | | | - Ghulam Destgeer
- Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Eiyad Abu-Nada
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Chen J, San SSS, Kung A, Tomasek M, Liu D, Rodgers W, Gau V. Direct-from-specimen microbial growth inhibition spectrums under antibiotic exposure and comparison to conventional antimicrobial susceptibility testing. PLoS One 2022; 17:e0263868. [PMID: 35171945 PMCID: PMC8849476 DOI: 10.1371/journal.pone.0263868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
Increasing global travel and changes in the environment may escalate the frequency of contact with a natural host carrying an infection and, therefore, increase our chances of encountering microorganisms previously unknown to humans. During an emergency, the etiology of infection may be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship Programs may not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine specimens. The antimicrobial potency was determined by the level of microbial growth inhibition and compared to conventional antimicrobial susceptibility testing results. The oligonucleotide probe pairs on the sensors were designed to target Gram-negative bacteria, specifically Enterobacterales and Pseudomonas aeruginosa. A pilot study of 10 remnant clinical specimens from the Clinical Laboratory Improvement Amendments-certified labs of New York-Presbyterian Queens was conducted, and only one sample was not detected by the probes. The remaining nine samples agreed with reference AST methods (Vitek and broth microdilution), resulting in 100% categorical agreement. In a separate feasibility study, we evaluated a dual-kinetic response approach, in which we inoculated two antibiotic stripwells containing the same antimicrobial concentrations with clinical specimens at the original concentration (1x) and at a 10-fold dilution (0.1x) to cover a broader range of microbiological responses. The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from 105 to 108 CFU/mL.
Collapse
Affiliation(s)
- Jade Chen
- GeneFluidics, Los Angeles, California, United States of America
| | - Su Su Soe San
- GeneFluidics, Los Angeles, California, United States of America
| | - Amelia Kung
- GeneFluidics, Los Angeles, California, United States of America
| | - Michael Tomasek
- GeneFluidics, Los Angeles, California, United States of America
| | - Dakai Liu
- Department of Pathology and Clinical Laboratories, New York-Presbyterian Queens, Flushing, New York, United States of America
| | - William Rodgers
- Department of Pathology and Clinical Laboratories, New York-Presbyterian Queens, Flushing, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, United States of America
| | - Vincent Gau
- GeneFluidics, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Numerical analysis on droplet mixing induced by microwave heating: Decoupling of influencing physical properties. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Sun H, Ren Y, Tao Y, Jiang T, Jiang H. Three-Fluid Sequential Micromixing-Assisted Nanoparticle Synthesis Utilizing Alternating Current Electrothermal Flow. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haizhen Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
5
|
Wang Z, Ye S, Zhang N, Liu X, Wang M. Triggerable Mutually Amplified Signal Probe Based SERS-Microfluidics Platform for the Efficient Enrichment and Quantitative Detection of miRNA. Anal Chem 2019; 91:5043-5050. [PMID: 30900865 DOI: 10.1021/acs.analchem.8b05172] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive detection of microRNAs (miRNAs) that serve as a disease marker could advance the diagnosis and treatment of diseases. Many methods used for quantitative detection of miRNAs, such as PCR-based approaches or the hybridization chain reaction, have presented challenges due to the complicated and time-consuming-procedures that are required. In this manuscript, a simple triggerable mutually amplified signal (TMAS) probe was designed and enriched within the center of a microfluidic chip and then used for one-step quantitative detection of microRNAs via surface enhanced Raman scattering (SERS) technology. First, many mutually amplified double strands are produced via an enzyme-free target-strand displacement recycling reaction initiated by the target miRNA, that result in the generation of an enhanced SERS signal. Second, microfluidic chips that utilize alternating current (AC) electrokinetic flow technology produce efficient mixing and rapid concentration to improve the DNA hybridization rate and further enhance the SERS signal intensity. This method enables the sensitive and rapid detection of miR-21 in human breast cancer cells within 30 min with a detection limit of 2.33 fM. Compared with traditional methods, this novel method overcomes the shortcomings resulting from complex operations, and has the advantages of high sensitivity, short assay time, and reduced sample usage.
Collapse
Affiliation(s)
- Zhenxing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Na Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Xun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Menglei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| |
Collapse
|
6
|
Hsu CC, Lee YC, Hsieh WH. Exterior-electrode electrically driven microconcentrator. Electrophoresis 2018; 39:2460-2470. [DOI: 10.1002/elps.201800099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/08/2018] [Accepted: 07/02/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Chia-Chun Hsu
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations; National Chung Cheng University; Chia-Yi Taiwan Republic of China
| | - Yan-Chang Lee
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations; National Chung Cheng University; Chia-Yi Taiwan Republic of China
| | - Wen-Hsin Hsieh
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations; National Chung Cheng University; Chia-Yi Taiwan Republic of China
| |
Collapse
|
7
|
Aghilinejad A, Aghaamoo M, Chen X, Xu J. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation. Electrophoresis 2017; 39:869-877. [DOI: 10.1002/elps.201700264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Arian Aghilinejad
- Department of Mechanical Engineering; Washington State University; Vancouver WA USA
| | - Mohammad Aghaamoo
- Department of Biomedical Engineering; University of California; Irvine CA USA
| | - Xiaolin Chen
- Department of Mechanical Engineering; Washington State University; Vancouver WA USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering; University of Illinois at Chicago; Chicago IL USA
| |
Collapse
|
8
|
Yesiloz G, Boybay MS, Ren CL. Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater. Anal Chem 2017; 89:1978-1984. [DOI: 10.1021/acs.analchem.6b04520] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gurkan Yesiloz
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Muhammed S. Boybay
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Department
of Computer Engineering, Antalya International University, Universite Caddesi No:2, 07190 Antalya, Turkey
| | - Carolyn L. Ren
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
SONG NN, ZHANG H, LI JB, ZHEN JH, GAO J. Electrokinetic Separation of Polystyrene Microspheres in Conductive Media on a Microfluidic Chip. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60801-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Lu Y, Liu T, Lamanda AC, Sin MLY, Gau V, Liao JC, Wong PK. AC Electrokinetics of Physiological Fluids for Biomedical Applications. ACTA ACUST UNITED AC 2014; 20:611-20. [PMID: 25487557 DOI: 10.1177/2211068214560904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 12/13/2022]
Abstract
Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.
Collapse
Affiliation(s)
- Yi Lu
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Tingting Liu
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Ariana C Lamanda
- Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Mandy L Y Sin
- Department of Urology, Stanford University, Stanford, CA, USA Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, CA, USA Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ, USA Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
|
12
|
Lu Y, Gao J, Zhang DD, Gau V, Liao JC, Wong PK. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal Chem 2013; 85:3971-6. [PMID: 23445209 DOI: 10.1021/ac4004248] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multidrug-resistant pathogens are an emerging global health problem. In addition to the need of developing new antibiotics in the pipeline, the ability to rapidly determine the antibiotic resistance profiles of bacteria represents one of the most crucial steps toward the management of infectious diseases and the prevention of multidrug-resistant pathogens. Here, we report a single cell antimicrobial susceptibility testing (AST) approach for rapid determination of the antibiotic resistance of bacterial pathogens. By confining individual bacteria in gas permeable microchannels with dimensions comparable to a single bacterium, the antibiotic resistance of the bacteria can be monitored in real-time at the single cell level. To facilitate the dynamic loading of the bacteria into the confined microchannels for observation, AC electrokinetics is demonstrated for capturing bacteria to defined locations in high-conductivity AST buffer. The electrokinetic technique achieves a loading efficiency of about 75% with a negligible effect on the bacterial growth rate. To optimize the protocol for single cell AST, the bacterial growth rate of individual bacteria under different antibiotic conditions has been determined systematically. The applicability of single cell AST is demonstrated by the rapid determination of the antimicrobial resistant profiles of uropathogenic clinical isolates in Mueller-Hinton media and in urine. The antibiotic resistance profiles of bacteria can be determined in less than 1 h compared to days in standard culture-based AST techniques.
Collapse
Affiliation(s)
- Yi Lu
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
13
|
Gao JG, Riahi R, Sin MLY, Zhang S, Wong PK. Electrokinetic focusing and separation of mammalian cells in conductive biological fluids. Analyst 2012; 137:5215-21. [PMID: 22937529 PMCID: PMC4086461 DOI: 10.1039/c2an35707k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Active manipulation of cells, such as trapping, focusing, and isolation, is essential for various bioanalytical applications. Herein, we report a hybrid electrokinetic technique for manipulating mammalian cells in physiological fluids. This technique applies a combination of negative dielectrophoretic force and hydrodynamic drag force induced by electrohydrodynamics, which is effective in conductive biological fluids. With a three-electrode configuration, the stable equilibrium positions of cells can be adjusted for separation and focusing applications. Cancer cells and white blood cells can be positioned and isolated into specific locations in the microchannel under both static and dynamic flow conditions. To investigate the sensitivity of the hybrid electrokinetic process, AC voltage, frequency, and bias dependences of the cell velocity were studied systematically. The applicability of the hybrid electrokinetic technique for manipulating cells in physiological samples is demonstrated by continuous focusing of human breast adenocarcinoma spiked in urine, buffy coats, and processed blood samples with 98% capture efficiency.
Collapse
Affiliation(s)
- Jian Gao Gao
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemical Engineering, Shandong Polytechnic University, Jinan 250353, China
| | - Reza Riahi
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Mandy L. Y. Sin
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
- Department of Urology, Stanford University, Palo Alto, California, 94304, USA
| | - Shufeng Zhang
- Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
14
|
Viefhues M, Eichhorn R, Fredrich E, Regtmeier J, Anselmetti D. Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis. LAB ON A CHIP 2012; 12:485-494. [PMID: 22193706 DOI: 10.1039/c1lc20610a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mixing and demixing (separation) are essential tasks in microfluidic devices, which seem to be contrary in nature. Accordingly, completely different strategies and devices are usually employed for their realization. We here present a microfluidic device which is capable of performing both these tasks as it can be operated in either mixing or demixing mode. The mixing and demixing processes are reversible and are accomplished by continuous operation of the device. An asymmetric S-shaped ridge extends over the full width of a microfluidic channel (200 μm) creating a constriction of 620 nm in height with an aspect ratio of 1 : 500. Appropriate AC and DC voltages generate electrodeless dielectrophoresis at the constriction as well as (linear) electrokinetic driving forces along the channel. These de/mixing parameters can be adapted in real time in such a way that continuous separation and mixing efficiencies of 85-100% can be achieved. As a proof of concept we demonstrate continuous mixing and demixing of polystyrene nanoparticles (20 and 100 nm). The experimental results are complemented by numerical simulations illustrating the particles' motion under the influence of the electrokinetic effects and thermal noise (diffusion). The monolithic one-step fabrication process by soft lithography (with PDMS in our case) will make integration and combination of several mixing and demixing functions into a more complex lab-on-a-chip device possible.
Collapse
Affiliation(s)
- Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
15
|
Sin MLY, Gao J, Liao JC, Wong PK. System Integration - A Major Step toward Lab on a Chip. J Biol Eng 2011; 5:6. [PMID: 21612614 PMCID: PMC3117764 DOI: 10.1186/1754-1611-5-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/25/2011] [Indexed: 02/08/2023] Open
Abstract
Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications.
Collapse
Affiliation(s)
- Mandy LY Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Jian Gao
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China
| | - Joseph C Liao
- Department of Urology, Stanford University, 300 Pasteur Drive, S-287, Stanford, CA 94305, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Biomedical Engineering and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
16
|
Gao J, Sin MLY, Liu T, Gau V, Liao JC, Wong PK. Hybrid electrokinetic manipulation in high-conductivity media. LAB ON A CHIP 2011; 11:1770-5. [PMID: 21487576 PMCID: PMC4084846 DOI: 10.1039/c1lc20054b] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This study reports a hybrid electrokinetic technique for label-free manipulation of pathogenic bacteria in biological samples toward medical diagnostic applications. While most electrokinetic techniques only function in low-conductivity buffers, hybrid electrokinetics enables effective operation in high-conductivity samples, such as physiological fluids (∼1 S m(-1)). The hybrid electrokinetic technique combines short-range electrophoresis and dielectrophoresis, and long-range AC electrothermal flow to improve its effectiveness. The major technical hurdle of electrode instability for manipulating high conductivity samples is tackled by using a Ti-Au-Ti sandwich electrode and a 3-parallel-electrode configuration is designed for continuous isolation of bacteria. The device operates directly with biological samples including urine and buffy coats. We show that pathogenic bacteria and biowarfare agents can be concentrated for over 3 orders of magnitude using hybrid electrokinetics.
Collapse
Affiliation(s)
- Jian Gao
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, 85721, USA. Fax: +1-520-621-8191; Tel: +1-520-626-2215
- Department of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China
| | - Mandy L. Y. Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, 85721, USA. Fax: +1-520-621-8191; Tel: +1-520-626-2215
| | - Tingting Liu
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, 85721, USA. Fax: +1-520-621-8191; Tel: +1-520-626-2215
| | - Vincent Gau
- GeneFluidics Inc, Monterey Park, California, 91754, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University, Palo Alto, California, 94304, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, 85721, USA. Fax: +1-520-621-8191; Tel: +1-520-626-2215
| |
Collapse
|
17
|
Choi S, Goryll M, Sin LYM, Wong PK, Chae J. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. MICROFLUIDICS AND NANOFLUIDICS 2011; 10:231-247. [PMID: 32214951 PMCID: PMC7087901 DOI: 10.1007/s10404-010-0638-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/26/2010] [Indexed: 05/14/2023]
Abstract
This article reviews state-of-the-art microfluidic biosensors of nucleic acids and proteins for point-of-care (POC) diagnostics. Microfluidics is capable of analyzing small sample volumes (10-9-10-18 l) and minimizing costly reagent consumption as well as automating sample preparation and reducing processing time. The merger of microfluidics and advanced biosensor technologies offers new promises for POC diagnostics, including high-throughput analysis, portability and disposability. However, this merger also imposes technological challenges on biosensors, such as high sensitivity and selectivity requirements with sample volumes orders of magnitude smaller than those of conventional practices, false response errors due to non-specific adsorption, and integrability with other necessary modules. There have been many prior review articles on microfluidic-based biosensors, and this review focuses on the recent progress in last 5 years. Herein, we review general technologies of DNA and protein biosensors. Then, recent advances on the coupling of the biosensors to microfluidics are highlighted. Finally, we discuss the key challenges and potential solutions for transforming microfluidic biosensors into POC diagnostic applications.
Collapse
Affiliation(s)
- Seokheun Choi
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Michael Goryll
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Lai Yi Mandy Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Junseok Chae
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
18
|
Sin MLY, Gau V, Liao JC, Wong PK. Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications. ACTA ACUST UNITED AC 2010; 15:426-432. [PMID: 21180401 DOI: 10.1016/j.jala.2010.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electrothermal flow is a promising technique in microfluidic manipulation toward laboratory automation applications, such as clinical diagnostics and high throughput drug screening. Despite the potential of electrothermal flow in biomedical applications, relative little is known about electrothermal manipulation of highly conductive samples, such as physiological fluids and buffer solutions. In this study, the characteristics and challenges of electrothermal manipulation of fluid samples with different conductivities were investigated systematically. Electrothermal flow was shown to create fluid motion for samples with a wide range of conductivity when the driving frequency was above 100 kHz. For samples with low conductivities (below 1 S/m), the characteristics of the electrothermal fluid motions were in quantitative agreement with the theory. For samples with high conductivities (above 1 S/m), the fluid motion appeared to deviate from the model as a result of potential electrochemical reactions and other electrothermal effects. These effects should be taken into consideration for electrothermal manipulation of biological samples with high conductivities. This study will provide insights in designing microfluidic devices for electrokinetic manipulation of biological samples toward laboratory automation applications in the future.
Collapse
Affiliation(s)
- Mandy L Y Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, PO Box 210119, Tucson, AZ 85721 USA
| | | | | | | |
Collapse
|
19
|
Stavis SM, Geist J, Gaitan M. Separation and metrology of nanoparticles by nanofluidic size exclusion. LAB ON A CHIP 2010; 10:2618-2621. [PMID: 20714640 DOI: 10.1039/c0lc00029a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A nanofluidic technology for the on-chip size separation and metrology of nanoparticles is demonstrated. A nanofluidic channel was engineered with a depth profile approximated by a staircase function. Numerous stepped reductions in channel depth were used to separate a bimodal mixture of nanoparticles by nanofluidic size exclusion. Epifluorescence microscopy was used to map the size exclusion positions of individual nanoparticles to corresponding channel depths, enabling measurement of the nanoparticle size distributions and validation of the size separation mechanism.
Collapse
Affiliation(s)
- Samuel M Stavis
- National Institute of Standards and Technology-Semiconductor Electronics Division, 100 Bureau Drive, Stop 8120, Gaithersburg, Maryland 20899-8120, USA.
| | | | | |
Collapse
|
20
|
Chen CH, Lu Y, Sin MLY, Mach KE, Zhang DD, Gau V, Liao JC, Wong PK. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal Chem 2010; 82:1012-9. [PMID: 20055494 DOI: 10.1021/ac9022764] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports the use of microfluidics, which intrinsically has a large surface-to-volume ratio, toward rapid antimicrobial susceptibility testing at the point of care. By observing the growth of uropathogenic Escherichia coli in gas permeable polymeric microchannels with different dimensions, we demonstrate that the large surface-to-volume ratio of microfluidic systems facilitates rapid growth of bacteria. For microchannels with 250 microm or less in depth, the effective oxygenation can sustain the growth of E. coli to over 10(9) cfu/mL without external agitation or oxygenation, which eliminates the requirement of bulky instrumentation and facilitates rapid bacterial growth for antimicrobial susceptibility testing at the point of care. The applicability of microfluidic rapid antimicrobial susceptibility testing is demonstrated in culture media and in urine with clinical bacterial isolates that have different antimicrobial resistance profiles. The antimicrobial resistance pattern can be determined as rapidly as 2 h compared to days in standard clinical procedures facilitating diagnostics at the point of care.
Collapse
Affiliation(s)
- Chia Hsiang Chen
- Department of Aerospace and Mechanical Engineering, P.O. Box 210119, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|