1
|
Enea M, Leite A, Franco R, Pereira E. Gold Nanoprobes for Robust Colorimetric Detection of Nucleic Acid Sequences Related to Disease Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1833. [PMID: 39591073 PMCID: PMC11597272 DOI: 10.3390/nano14221833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (AuNPs) are highly attractive for applications in the field of biosensing, particularly for colorimetric nucleic acid detection. Their unique optical properties, which are highly sensitive to changes in their environment, make them ideal candidates for developing simple, rapid, and cost-effective assays. When functionalized with oligonucleotides (Au-nanoprobes), they can undergo aggregation or dispersion in the presence of complementary sequences, leading to distinct color changes that serve as a visual signal for detection. Aggregation-based assays offer significant advantages over other homogeneous assays, such as fluorescence-based methods, namely, label-free protocols, rapid interactions in homogeneous solutions, and detection by the naked eye or using low-cost instruments. Despite promising results, the application of Au-nanoprobe-based colorimetric assays in complex biological matrices faces several challenges. The most significant are related to the colloidal stability and oligonucleotide functionalization of the Au-nanoprobes but also to the mode of detection. The type of functionalization method, type of spacer, the oligo-AuNPs ratio, changes in pH, temperature, or ionic strength influence the Au-nanoprobe colloidal stability and thus the performance of the assay. This review elucidates characteristics of the Au-nanoprobes that are determined for colorimetric gold nanoparticles (AuNPs)-based nucleic acid detection, and how they influence the sensitivity and specificity of the colorimetric assay. These characteristics of the assay are fundamental to developing low-cost, robust biomedical sensors that perform effectively in biological fluids.
Collapse
Affiliation(s)
- Maria Enea
- LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal (E.P.)
| | - Andreia Leite
- LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal (E.P.)
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Eulália Pereira
- LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal (E.P.)
| |
Collapse
|
2
|
Enea M, Nuekaew A, Franco R, Pereira E. Gold Nanoprobes for Detection of a Crucial EGFR Deletion for Early Diagnosis of Non-Small-Cell Lung Cancer. BIOSENSORS 2024; 14:162. [PMID: 38667155 PMCID: PMC11048279 DOI: 10.3390/bios14040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL-1 using a 0.15 nmol dm-3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.
Collapse
Affiliation(s)
- Maria Enea
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal; (A.N.); (E.P.)
| | - Anupong Nuekaew
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal; (A.N.); (E.P.)
| | - Ricardo Franco
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Eulália Pereira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal; (A.N.); (E.P.)
| |
Collapse
|
3
|
Stein F, Kohsakowski S, Martinez-Hincapie R, Reichenberger S, Rehbock C, Colic V, Guay D, Barcikowski S. Disproportional surface segregation in ligand-free gold-silver alloy solid solution nanoparticles, and its implication for catalysis and biomedicine. Faraday Discuss 2023; 242:301-325. [PMID: 36222171 DOI: 10.1039/d2fd00092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.
Collapse
Affiliation(s)
- Frederic Stein
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | | | | | - Sven Reichenberger
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Christoph Rehbock
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Viktor Colic
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Guay
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Stephan Barcikowski
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| |
Collapse
|
4
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol 2022; 13:841124. [PMID: 35295305 PMCID: PMC8919054 DOI: 10.3389/fmicb.2022.841124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilm is a tri-dimensional complex community of cells at different metabolic stages involved in a matrix of self-produced extracellular polymeric substances. Biofilm formation is part of a defense mechanism that allows the bacteria to survive in hostile environments, such as increasing resistance or tolerance to antimicrobial agents, causing persistent infections hard to treat and impair disease eradication. One such example is bovine mastitis associated with Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), whose worldwide health and economic impact is on the surge. As such, non-conventional nanobased approaches have been proposed as an alternative to tackle biofilm formation and to which pathogenic bacteria fail to adapt. Among these, metallic nanoparticles have gained significant attention, particularly gold and silver nanoparticles, due to their ease of synthesis and impact against microorganism growth. This study provides a proof-of-concept investigation into the use of gold-silver alloy nanoparticles (AuAgNPs) toward eradication of bacterial biofilms. Upon visible light irradiation of AuAgNPs there was considerable disturbance of the biofilms' matrix. The hindering of structural integrity of the biofilm matrix resulted in an increased permeability for entry of antibiotics, which then cause the eradication of biofilm and inhibit subsequent biofilm formation. Additionally, our results that AuAgNPs inhibited the formation of SDSD biofilms via distinct stress pathways that lead to the downregulation of two genes critical for biofilm production, namely, brpA-like encoding biofilm regulatory protein and fbpA fibronectin-binding protein A. This study provides useful information to assist the development of nanoparticle-based strategies for the active treatment of biofilm-related infections triggered by photoirradiation in the visible.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alexandra R. Fernandes
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
5
|
Nguyen CM, Frias Batista LM, John MG, Rodrigues CJ, Tibbetts KM. Mechanism of Gold-Silver Alloy Nanoparticle Formation by Laser Coreduction of Gold and Silver Ions in Solution. J Phys Chem B 2021; 125:907-917. [PMID: 33439650 DOI: 10.1021/acs.jpcb.0c10096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical reduction of aqueous Ag+ and [AuCl4]- into alloy Au-Ag nanoparticles (Au-Ag NPs) with intense laser pulses is a green synthesis approach that requires no toxic chemical reducing agents or stabilizers; however size control without capping agents still remains a challenge. Hydrated electrons produced in the laser plasma can reduce both [AuCl4]- and Ag+ to form NPs, but hydroxyl radicals (OH·) in the plasma inhibit Ag NP formation by promoting the back-oxidation of Ag0 into Ag+. In this work, femtosecond laser reduction is used to synthesize Au-Ag NPs with controlled compositions by adding the OH· scavenger isopropyl alcohol (IPA) to precursor solutions containing KAuCl4 and AgClO4. With sufficient IPA concentration, varying the precursor ratio enabled control over the Au-Ag NP composition and produced alloy NPs with average sizes less than 10 nm and homogeneous molar compositions of Au and Ag. By investigating the kinetics of Ag+ and [AuCl4]- coreduction, we find that the reduction of [AuCl4]- into Au-Ag NPs occurs before most of the Ag+ is incorporated, giving us insight into the mechanism of Au-Ag NP formation.
Collapse
Affiliation(s)
- Christopher M Nguyen
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Laysa M Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mallory G John
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Collin J Rodrigues
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
6
|
George JM, Priyanka RN, Mathew B. Bimetallic Ag–Au nanoparticles as pH dependent dual sensing probe for Mn(II) ion and ciprofloxacin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
RNA Quantification Using Noble Metal Nanoprobes: Simultaneous Identification of Several Different mRNA Targets Using Color Multiplexing and Application to Chronic Myeloid Leukemia Diagnostics. Methods Mol Biol 2020. [PMID: 32152985 DOI: 10.1007/978-1-0716-0319-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanotechnology provides new tools for gene expression analysis that allow for sensitive and specific characterization of prognostic signatures related to cancer. Cancer is a complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus allows for a more accurate indication into the degree of cancerous activity than either locus alone. Metal nanoparticles have been widely used as labels for in vitro identification and quantification of target sequences.Here we describe the synthesis of nanoparticles with different noble metal compositions in an alloy format that are then functionalized with thiol-modified ssDNA (nanoprobes). We also show how such nanoprobes are used in a non-cross-linking colorimetric method for the direct detection and quantification of specific mRNA targets, without the need for enzymatic amplification or reverse-transcription steps. The different metals in the alloy provide for distinct absorption spectra due to their characteristic plasmon resonance peaks. The color multiplexing allows for simultaneous identification of different mRNA targets involved in cancer development. A comparison of the absorption spectra of the nanoprobe mixtures taken before and after induced aggregation of metal nanoparticles allows to both identify and quantify each mRNA target. We describe the use of gold and gold-silver alloy nanoprobes for the development of the non-cross-linking method to detect a specific BCR-ABL fusion gene (e.g., e1a2 and e14a2) mRNA target associated with chronic myeloid leukemia (CML) using 10 ng/μL of unamplified total human RNA. Additionally, we demonstrate the use of this approach for the direct diagnostics of CML. This simple methodology takes less than 50 min to complete after total RNA extraction with comparable specificity and sensitivity to the more commonly used methods.
Collapse
|
8
|
Baptista PV. Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics: an update. Expert Rev Mol Diagn 2018; 18:767-773. [PMID: 30037279 DOI: 10.1080/14737159.2018.1503950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION An update on the uses and applications of the non-cross-linking (NCL) hybridization assay based on the spectral modulation of gold nanoparticles (AuNPs) are presented, emphasizing DNA and RNA detection. Areas covered: Nanotechnology is strongly impacting the way we address diagnostics and therapeutics. In fact, nanoscale devices and particles have been used in a variety of platforms for improved biosensing and, more interestingly, for molecular diagnostics. AuNPs have been used in a great diversity of DNA and RNA detection strategies that are based on their nanoscale properties. Their unique optical properties have put them at the forefront of colorimetric sensing platforms. Among these, those relying on the NCL mechanism using DNA-modified AuNPs have shown remarkable versatility and simplicity for molecular detection of human pathogens, identification of single base alterations at the basis of human disease, gene expression, among others. Application of the NCL assay to molecular diagnostics will be discussed considering the challenges for validation and clinically relevant targets. Expert commentary: Integration of the NCL approach using AuNPs into chip biosensing platforms, projecting miniaturization and portability, will be addressed in terms of the future, i.e. clinical validation and translation to market.
Collapse
Affiliation(s)
- Pedro V Baptista
- a UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia , Universidade NOVA de Lisboa , Caparica , Portugal
| |
Collapse
|
9
|
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran and Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Ahmadi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Farshad Lolasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran and Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahnaz Bozorgomid
- Department of Pharmaceutical Chemistry, Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran and Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Amin Shiralizadeh Dezfuli
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 2018; 9:1441. [PMID: 30013539 PMCID: PMC6036605 DOI: 10.3389/fmicb.2018.01441] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.
Collapse
Affiliation(s)
- Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Matthew P. McCusker
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Andreia Carvalho
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela A. Ferreira
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Niamh M. Mohan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Nuritas Limited, Dublin, Ireland
| | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
11
|
Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [PMID: 29533101 DOI: 10.1080/21691401.2018.1449118] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of nanoparticles (NPs) as a part of cancer therapeutics has given rise to a new field of research - cancer nanomedicine. In comparison to traditional anti-cancer drugs, NPs provide a targeted approach which prevents undesirable effects. In this communication, we have reviewed the role of gold and silver NPs (AgNPs) in the cancer nanomedicine. The preparation of gold NPs (AuNPs) and AgNPs can be grouped into three categories - physical, chemical and biological. Among the three approaches, the biological approach is growing and receiving more attention due to its safe and effective production. In this review, we have discussed important methods for synthesis of gold and AgNPs followed by techniques employed in characterization of their physicochemical properties, such as UV-visible spectroscopy, electron microscopy (TEM and SEM) and size and surface analysis (DLS). The mechanism of formation of these NPs in an aqueous medium through various stages - reduction, nucleation and growth has also been reviewed briefly. Finally, we conclude our review with the application of these NPs as anti-cancer agents and numerous mechanisms by which they render cancer cell toxicity.
Collapse
Affiliation(s)
- Heerak Chugh
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , New Delhi , India
| | - Damini Sood
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , New Delhi , India
| | - Ishita Chandra
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , New Delhi , India
| | - Vartika Tomar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , New Delhi , India
| | - Gagan Dhawan
- b Department of Biomedical Science , Acharya Narendra Dev College, University of Delhi , New Delhi , India
| | - Ramesh Chandra
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , New Delhi , India.,c Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi , New Delhi , India
| |
Collapse
|
12
|
Larguinho M, Canto R, Cordeiro M, Pedrosa P, Fortuna A, Vinhas R, Baptista PV. Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics. Expert Rev Mol Diagn 2015; 15:1355-68. [DOI: 10.1586/14737159.2015.1077704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Veigas B, Pedrosa P, Carlos FF, Mancio-Silva L, Grosso AR, Fortunato E, Mota MM, Baptista PV. One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. J Nanobiotechnology 2015; 13:48. [PMID: 26250828 PMCID: PMC4527100 DOI: 10.1186/s12951-015-0109-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Background Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens. Results For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy. Conclusions Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0109-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Veigas
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal. .,Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, CENIMAT/I3N, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Pedro Pedrosa
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio F Carlos
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal. .,STABVIDA, Investigação e Serviços em Ciências Biológicas, Lda. Madan Parque, 2825-182, Caparica, Portugal.
| | - Liliana Mancio-Silva
- Instituto de Medicina Molecular, Universidade de Lisboa. Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ana Rita Grosso
- Instituto de Medicina Molecular, Universidade de Lisboa. Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Elvira Fortunato
- Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, CENIMAT/I3N, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Maria M Mota
- Instituto de Medicina Molecular, Universidade de Lisboa. Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Pedro V Baptista
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
14
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
15
|
Luo Y, He L, Zhan S, Wu Y, Liu L, Zhi W, Zhou P. Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1032-1037. [PMID: 24400926 DOI: 10.1021/jf403566e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper reports an ultrasensitive resonance scattering (RS) method to detect tetracycline (TET) in milk based on the competition of aptamers between nanogold and TET, aggregation of naked nanogold, nanocatalytic Fehling reaction, and RS signals of catalytic product Cu₂O cubic. The detection principle was confirmed by the nanoparticle size analyzer (NANOS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The variations of RS intensity had good linear correlation with TET concentrations, and the limit of detection was calculated as 11.6 nM. The proposed method was successfully applied for analysis of TET in milk, with total recoveries ranging from 105 to 109%.
Collapse
Affiliation(s)
- Yanfang Luo
- School of Agriculture and Biology, ‡Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Bor S. Luh Food Safety Research Center, and §School of Environmental Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Pourhassan-Moghaddam M, Rahmati-Yamchi M, Akbarzadeh A, Daraee H, Nejati-Koshki K, Hanifehpour Y, Joo SW. Protein detection through different platforms of immuno-loop-mediated isothermal amplification. NANOSCALE RESEARCH LETTERS 2013; 8:485. [PMID: 24237767 PMCID: PMC3835475 DOI: 10.1186/1556-276x-8-485] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/05/2013] [Indexed: 05/14/2023]
Abstract
Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins. Here we propose a new method nominated as 'immuno-loop-mediated isothermal amplification' or 'iLAMP'. This new method is free from the problems of the previous methods and has significant advantages over them. In this paper we also offer various configurations in order to improve the applicability of this method in real-world sample analyses. Important potential applications of this method are stated as well.
Collapse
Affiliation(s)
- Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51656, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
| | - Hadis Daraee
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kazem Nejati-Koshki
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
| | - Younes Hanifehpour
- School of Mechanical Engineering, WCU Nanoresearch Center, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, WCU Nanoresearch Center, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|
17
|
Kim WJ, Kim S, Kim AR, Yoo DJ. Direct Detection System for Escherichia coli Using Au–Ag Alloy Microchips. Ind Eng Chem Res 2013. [DOI: 10.1021/ie3022797] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Wan-Joong Kim
- Biosensor Research Team, Electronics and Telecommunications Research Institute, Daejeon 305-700,
Republic of Korea
| | - Sanghee Kim
- Department
of Mechanical Systems Engineering, Hansung University, Seoul 136-792, Republic of Korea
| | | | | |
Collapse
|
18
|
Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics — From genomics to proteomics. J Proteomics 2012; 75:2811-23. [DOI: 10.1016/j.jprot.2011.11.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 12/11/2022]
|
19
|
|
20
|
Guo X, Zhang Q, Sun Y, Zhao Q, Yang J. Lateral etching of core-shell Au@Metal nanorods to metal-tipped au nanorods with improved catalytic activity. ACS NANO 2012; 6:1165-75. [PMID: 22224460 DOI: 10.1021/nn203793k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Selective growth/etching of hybrid materials is very important for the rational synthesis of hierarchical structures and precise modulation of their physical properties. Here, the lateral etching of the core-shell Au@Ag nanorods is achieved by FeCl(3) at room temperature, producing a number of dumbbell-like Ag-tipped Au nanorods. This selective etching at the side of the core-shell nanorods is attributed to the increased reactivity of the side facets, due to less surface passivation of cetyltrimethylammonium bromide. The similar synthetic strategy has also been demonstrated to be successful for the Pd-tipped Au nanorods that have not been reported before, indicating the great potential of this selective etching. The Ag-tipped Au nanorods are examined as a catalyst for the reduction of p-nitrophenol at room temperature. The Ag-tipped Au nanorods exhibit a higher catalytic activity than Au nanorods and core-shell Au@Ag nanorods, which could be attributed to the electronic effect and the unique structure in the Ag-tipped Au nanorods.
Collapse
Affiliation(s)
- Xia Guo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Noble metal nanoparticles for biosensing applications. SENSORS 2012; 12:1657-87. [PMID: 22438731 PMCID: PMC3304133 DOI: 10.3390/s120201657] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/29/2012] [Accepted: 02/02/2012] [Indexed: 12/24/2022]
Abstract
In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory.
Collapse
|
22
|
Conde J, Doria G, de la Fuente JM, Baptista PV. RNA quantification using noble metal nanoprobes: simultaneous identification of several different mRNA targets using color multiplexing and application to cancer diagnostics. Methods Mol Biol 2012; 906:71-87. [PMID: 22791425 DOI: 10.1007/978-1-61779-953-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanotechnology provides new tools for gene expression analysis that allow for sensitive and specific characterization of prognostic signatures related to cancer. Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus allows for a more accurate indication of degree of cancerous activity than either locus alone. Metal nanoparticles have been widely used as labels for in vitro identification and quantification of target sequences. Here we describe the synthesis of nanoparticles with different noble metal compositions in an alloy format that are then functionalized with thiol-modified ssDNA (nanoprobes). We also show how to use such nanoprobes in a non-cross-linking colorimetric method for the direct detection and quantification of specific mRNA targets, without the need for enzymatic amplification or reverse transcription steps. The different metals in the alloy provide for distinct absorption spectra due to their characteristic plasmon resonance peaks. The color multiplexing allows for simultaneous identification of several different mRNA targets involved in cancer development. Comparison of the absorption spectra of the nanoprobes mixtures taken before and after induced aggregation of metal nanoparticles allows to both identify and quantify each mRNA target. We describe the use of gold and gold:silver-alloy nanoprobes for the development of the non-cross-linking method to detect a specific BCR-ABL fusion gene (e.g., e1a2 and e14a2) mRNA target associated with chronic myeloid leukemia (CML) using 10 ng μL(-1) of unamplified total human RNA. This simple methodology takes less than 50 min to complete after total RNA extraction with comparable specificity and sensitivity to the more commonly used methods.
Collapse
Affiliation(s)
- João Conde
- CIGMH, Departamento de Ciências da Vida, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
23
|
Cai LJ, Wang M, Hu Y, Qian DJ, Chen M. Synthesis and mechanistic study of stable water-soluble noble metal nanostructures. NANOTECHNOLOGY 2011; 22:285601. [PMID: 21642757 DOI: 10.1088/0957-4484/22/28/285601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sodium salt of poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA) has been employed to prepare a series of stable nanosized metal colloids such as silver, gold, palladium, platinum, and silver-gold alloy nanostructures. All of the as-synthesized products are very stable in water. The metal nanostructures have been directly confirmed by ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction (SAED), and also characterized by techniques such as Fourier transform infrared spectroscopy (FT-IR) and (1)H NMR. Intensive study has found that the metal ions are most probably reduced by organic radicals, generated from the thermal degradation of PSSMA.
Collapse
Affiliation(s)
- Ling-Jian Cai
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E, Franco R. Nanoparticles in molecular diagnostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:427-88. [PMID: 22093226 DOI: 10.1016/b978-0-12-416020-0.00011-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this chapter is to provide an overview of the available and emerging molecular diagnostic methods that take advantage of the unique nanoscale properties of nanoparticles (NPs) to increase the sensitivity, detection capabilities, ease of operation, and portability of the biodetection assemblies. The focus will be on noble metal NPs, especially gold NPs, fluorescent NPs, especially quantum dots, and magnetic NPs, the three main players in the development of probes for biological sensing. The chapter is divided into four sections: a first section covering the unique physicochemical properties of NPs of relevance for their utilization in molecular diagnostics; the second section dedicated to applications of NPs in molecular diagnostics by nucleic acid detection; and the third section with major applications of NPs in the area of immunoassays. Finally, a concluding section highlights the most promising advances in the area and presents future perspectives.
Collapse
Affiliation(s)
- Pedro V Baptista
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Centro de Investigação em Genética Molecular Humana (CIGMH), Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|