1
|
Halwai K, Khanna S, Gupta G, Wahab S, Khalid M, Kesharwani P. Folate-conjugated carbon nanotubes as a promising therapeutic approach for targeted cancer therapy. J Drug Target 2024:1-16. [PMID: 39141661 DOI: 10.1080/1061186x.2024.2393423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Conventional systemic cancer therapy often causes numerous adverse events. However, discovering overexpressed folate receptors in solid tumours has paved the way for targeted chemotherapy. Folic acid (FA), a ligand for these receptors, is frequently combined with chemotherapeutic drugs to improve their effectiveness. Carbon nanotubes have emerged as a versatile and promising method for delivering these folate-conjugated nano-systems, ensuring targeted delivery of therapeutic agents to cancerous cells. When FA-conjugated nanotubes dissociate, they release the drug-loaded nanotubes inside the malignant cells, reducing off-target effects. These nanotubes can also be used for combination therapies, producing synergistic effects. This review aims to comprehensively gather and critically evaluate the latest methods for delivering therapeutics using FA-conjugated nanovehicles. Additionally, it seeks to enhance our comprehension of the pertinent chemistry and biochemical pathways involved in this approach.
Collapse
Affiliation(s)
- Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Shen S, Qiu J, Huo D, Xia Y. Nanomaterial-Enabled Photothermal Heating and Its Use for Cancer Therapy via Localized Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305426. [PMID: 37803412 PMCID: PMC10922052 DOI: 10.1002/smll.202305426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Photothermal therapy (PTT), which employs nanoscale transducers delivered into a tumor to locally generate heat upon irradiation with near-infrared light, shows great potential in killing cancer cells through hyperthermia. The efficacy of such a treatment is determined by a number of factors, including the amount, distribution, and dissipation of the generated heat, as well as the type of cancer cell involved. The amount of heat generated is largely controlled by the number of transducers accumulated inside the tumor, the absorption coefficient and photothermal conversion efficiency of the transducer, and the irradiance of the light. The efficacy of treatment depends on the distribution of the transducers in the tumor and the penetration depth of the light. The vascularity and tissue thermal conduction both affect the dissipation of heat and thereby the distribution of temperature. The successful implementation of PTT in the clinic setting critically depends on techniques for real-time monitoring and management of temperature.
Collapse
Affiliation(s)
- Song Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Overview on the Antimicrobial Activity and Biocompatibility of Sputtered Carbon-Based Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to their outstanding properties, carbon-based structures have received much attention from the scientific community. Their applications are diverse and include use in coatings on self-lubricating systems for anti-wear situations, thin films deposited on prosthetic elements, catalysis structures, or water remediation devices. From these applications, the ones that require the most careful testing and improvement are biomedical applications. The biocompatibility and antibacterial issues of medical devices remain a concern, as several prostheses still fail after several years of implantation and biofilm formation remains a real risk to the success of a device. Sputtered deposition prevents the introduction of hazardous chemical elements during the preparation of coatings, and this technique is environmentally friendly. In addition, the mechanical properties of C-based coatings are remarkable. In this paper, the latest advances in sputtering methods and biocompatibility and antibacterial action for diamond-based carbon (DLC)-based coatings are reviewed and the greater outlook is then discussed.
Collapse
|
5
|
Gao Q, Gao J, Ding C, Li S, Deng L, Kong Y. Construction of a pH- and near-infrared irradiation-responsive nanoplatform for chemo-photothermal therapy. Int J Pharm 2021; 593:120112. [PMID: 33259903 DOI: 10.1016/j.ijpharm.2020.120112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Au nanoclusters, decorated with graphene quantum dots (GQDs), were obtained through photocatalytic reduction of AuCl43- by UV irradiation, and then cytarabine (Cyt) was loaded to the Au/GQDs via charge-dipole interactions. Mercaptopropionic acid (MPA) was anchored to the Cyt-loaded Au/GQDs through the formation of Au-S bond, which was further encapsulated by polyethyleneimine (PEI) via charge-dipole interactions. The delivery of Cyt from the quaternary complex (Au/GQDs/MPA/PEI) is pH-sensitive and can be modulated by near-infrared (NIR) irradiation. The results of cell viability test indicate that the developed nanoplatform can be used for chemo-photothermal combination therapy of cancer cells, and the efficacy of chemo-photothermal combination therapy is significantly higher than that of the single mode of photothermal therapy (PTT) or chemotherapy.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 518000, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China.
| | - Chengqiang Ding
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Shangji Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Abstract
Nanotechnology has been widely applied to medical interventions for prevention, diagnostics, and therapeutics of diseases, and the application of nanotechnology for medical purposes, which is called as a term "nanomedicine" has received tremendous attention. In particular, the design and development of nanoparticle for biosensors have received a great deal of attention, since those are most impactful area of clinical translation showing potential breakthrough in early diagnosis of diseases such as cancers and infections. For example, the nanoparticles that have intrinsic unique features such as magnetic responsive characteristics or photoluminescence can be utilized for noninvasive visualization of inner body. Drug delivery that makes use of drug-containing nanoparticles as a carrier is another field of study, in which the particulate form nanomedicine is given by parenteral administration for further systemic targeting to pathological tissues. In addition, encapsulation into nanoparticles gives the opportunity to secure the sensitive therapeutic payloads that are readily degraded or deactivated until reached to the target in biological environments, or to provide sufficient solubilization (e.g., to deliver compounds which have physicochemical properties that strongly limit their aqueous solubility and therefore systemic bioavailability). The nanomedicine is further intended to enhance the targeting index such as increased specificity and reduced false binding, thus improve the diagnostic and therapeutic performances. In this chapter, principles of nanomaterials for medicine will be thoroughly covered with applications for imaging-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
7
|
Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V. Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1195. [PMID: 31450616 PMCID: PMC6780818 DOI: 10.3390/nano9091195] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023]
Abstract
Cancer is one of the major health issues with increasing incidence worldwide. In spite of the existing conventional cancer treatment techniques, the cases of cancer diagnosis and death rates are rising year by year. Thus, new approaches are required to advance the traditional ways of cancer therapy. Currently, nanomedicine, employing nanoparticles and nanocomposites, offers great promise and new opportunities to increase the efficacy of cancer treatment in combination with thermal therapy. Nanomaterials can generate and specifically enhance the heating capacity at the tumor region due to optical and magnetic properties. The mentioned unique properties of nanomaterials allow inducing the heat and destroying the cancerous cells. This paper provides an overview of the utilization of nanoparticles and nanomaterials such as magnetic iron oxide nanoparticles, nanorods, nanoshells, nanocomposites, carbon nanotubes, and other nanoparticles in the thermal ablation of tumors, demonstrating their advantages over the conventional heating methods.
Collapse
Affiliation(s)
- Zhannat Ashikbayeva
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
- PI National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Damir Balmassov
- Department of Pedagogical Sciences, Astana International University, 8 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Emiliano Schena
- Measurements and Biomedical Instrumentation Lab, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milano, Italy
| | - Vassilis Inglezakis
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
| |
Collapse
|
8
|
The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol Adv 2018; 36:2232-2247. [PMID: 30342084 DOI: 10.1016/j.biotechadv.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
With unique characteristics such as high surface area, capacity of various functionalization, low weight, high conductivity, thermal and chemical stability, and free radical scavenging, carbon nanomaterials (CNMs) such as carbon nanotubes (CNTs), fullerene, graphene (oxide), carbon nanohorns (CNHs), and their derivatives have increasingly been utilized in nanomedicine and biomedicine. On the one hand, owing to ever-increasing applications of CNMs in technological and industrial fields as well as presence of combustion-derived CNMs in the ambient air, the skepticism has risen over the adverse effects of CNMs on human being. The influences of CNMs on cardiovascular system and cardiovascular diseases (CVDs) such as atherosclerosis, of which consequences are ischemic heart disease and ischemic stroke, as the main causes of death, is of paramount importance. In this regard, several studies have been devoted to specify the biomedical applications and cardiovascular toxicity of CNMs. Therefore, the aim of this review is to specify the roles and applications of various CNMs in atherosclerosis, and also identify the key role playing parameters in cardiovascular toxicity of CNMs so as to be a clue for prospective deployment of CNMs.
Collapse
|
9
|
Abstract
There are several reasons why nanotechnology is currently considered as the leader among the most intensively developing research trends. Nanomatter often exhibits new properties, other than those of the morphology of a continuous solid. Also, new phenomena appear at the nanoscale, which are unknown in the case of microcrystalline objects. For this reason, nanomaterials have already found numerous applications that are described in this review. However, among intensively developed various branches of nanotechnology, nanomedicine and pharmacology stand out particularly, which opens new possibilities for the development of these disciplines, gives great hope for the creation of new drugs in which toxicological properties are reduced to a minimum, reduces the doses of medicines, offers targeted treatment and increases diagnostic possibilities. Nanotechnology is the source of a great revolution in medicine. It gives great hope for better and faster treatment of many diseases and gives hope for a better tomorrow. However, the creation of new "nanodrugs" requires a special understanding of the properties of nanoparticles. This article is a review work which determines and describes the way of creating new nanodrugs from ab initio calculations by docking and molecular dynamic applications up to a new medicinal product, as a proposal for the personalized medicine, in the early future.
Collapse
Affiliation(s)
- Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland,
| |
Collapse
|
10
|
Suo X, Eldridge BN, Zhang H, Mao C, Min Y, Sun Y, Singh R, Ming X. P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33464-33473. [PMID: 30188117 PMCID: PMC6200400 DOI: 10.1021/acsami.8b11974] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
P-Glycoprotein (Pgp)-medicated multidrug resistance (MDR) remains a formidable challenge to cancer therapy. As conventional approaches using small-molecule inhibitors failed in clinical development because of the lack of cancer specificity, we develop Pgp-targeted carbon nanotubes to achieve highly cancer-specific therapy through combining antibody-based cancer targeting and locoregional tumor ablation with photothermal therapy. Through a dense coating with phospholipid-poly(ethylene glycol), we have engineered multiwalled carbon nanotubes (MWCNTs) which show minimum nonspecific cell interactions and maximum intercellular diffusion. After chemically modifying with an anti-Pgp antibody, these MWCNTs showed highly Pgp-specific cellular uptake. Treatment of the targeted MWCNTs caused dramatic cytotoxicity in MDR cancer cells upon photoirradiation, whereas they did not cause any toxicity in the dark or phototoxicity toward normal cells that do not express Pgp. Because of excellent intratumor diffusion and Pgp-specific cellular uptake, the targeted MWCNTs produced strong phototoxicity in tumor spheroids of MDR cancer cells, a 3-D tumor model for studying tumor penetration and therapy. In conclusion, we have developed highly Pgp-specific MWCNTs that may provide an effective therapy for MDR cancers where other approaches have failed.
Collapse
Affiliation(s)
- Xubin Suo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Brittany N. Eldridge
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
| | - Han Zhang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengqiong Mao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Sun
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- Corresponding authors: Xin Ming () and Ravi Singh ()
| | - Xin Ming
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- Corresponding authors: Xin Ming () and Ravi Singh ()
| |
Collapse
|
11
|
Graphene oxide@gold nanorods for chemo-photothermal treatment and controlled release of doxorubicin in mice Tumor. Colloids Surf B Biointerfaces 2017; 160:543-552. [DOI: 10.1016/j.colsurfb.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
|
12
|
Deb A, R V. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery-A comparative study. Int J Biol Macromol 2017; 107:2320-2333. [PMID: 29055699 DOI: 10.1016/j.ijbiomac.2017.10.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
Two dimensional graphene and its derivatives have been a focus of scientific study due to its unique features which makes it suitable for biomedical applications. Herein a comparative study was carried out between chitosan polymerized graphene oxide and polyvinylpyrrolidone polymerized graphene oxide nanoparticles. The polymerized nanocarriers were further decorated with folic acid and anticancer drug camptothecin was loaded. The nanocarriers thus synthesized were characterized by x-ray diffractometer (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), UV-vis spectroscopy (UV), zeta potential and fluorescence spectroscopy. The biocompatibility of the two nanocarriers was compared via hemolysis and anti-inflammatory studies and the cellular toxicity was assayed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Sulforhodamine B (SRB) assay against MCF-7 cell lines. The study indicates that chitosan polymerized graphene oxide nanocarrier was more suitable for biomedical applications in comparison to polyvinylpyrrolidone. The percentage hemolysis caused by chitosan polymerized graphene oxide was almost equivalent to diclofenac salt which served as standard. Also it has, increased drug loading capacity and greater percentage inhibition of MCF-7 cell lines as per MTT and SRB assay.
Collapse
Affiliation(s)
- Ananya Deb
- School of Biosciences & Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Vimala R
- Centre for Nanotechnology Research, VIT University, Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
13
|
Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1289-1304. [DOI: 10.1016/j.msec.2017.02.132] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 12/25/2022]
|
14
|
Darrigues E, Dantuluri V, Nima ZA, Vang-Dings KB, Griffin RJ, Biris AR, Ghosh A, Biris AS. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance. Part 2: Treatment. Drug Metab Rev 2017; 49:253-283. [DOI: 10.1080/03602532.2017.1307387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Vijayalakshmi Dantuluri
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Zeid A. Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Kieng Bao Vang-Dings
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Robert J. Griffin
- Arkansas Nanomedicine Center, Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexandru R. Biris
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Anindya Ghosh
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| |
Collapse
|
15
|
Karimi M, Zangabad PS, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017; 139:4584-4610. [PMID: 28192672 PMCID: PMC5475407 DOI: 10.1021/jacs.6b08313] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Soodeh Baghaee-Ravari
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehdi Ghazadeh
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Hamid Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnology 2017; 15:25. [PMID: 28359284 PMCID: PMC5374694 DOI: 10.1186/s12951-017-0260-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
Background Pathogenic bacteria contribute to various globally important diseases, killing millions of people each year. Various fields of medicine currently benefit from or may potentially benefit from the use of nanotechnology applications, in which there is growing interest. Disease-related biomarkers can be rapidly and directly detected by nanostructures, such as nanowires, nanotubes, nanoparticles, cantilevers, microarrays, and nanoarrays, as part of an accurate process characterized by lower sample consumption and considerably higher sensitivity. There is a need for accurate techniques for pathogenic bacteria identification and detection to allow the prevention and management of pathogenic diseases and to assure food safety. Conclusion The focus of this review is on the current nanoparticle-based techniques for pathogenic bacterial identification and detection using these applications.
Collapse
Affiliation(s)
- Teodora Mocan
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, Cluj-Napoca, Romania
| | - Cristian T Matea
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Teodora Pop
- 3rd Gastroenterology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Ofelia Mosteanu
- 3rd Gastroenterology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, Cluj-Napoca, Romania
| | - Cosmin Puia
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Cornel Iancu
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania. .,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania.
| | - Lucian Mocan
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania. .,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Zhou J, Li J, Wu D, Hong C. CNT-Based and MSN-Based Organic/Inorganic Hybrid Nanocomposites for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Jiemei Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jiaoyang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Decheng Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunyan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
18
|
Murali VS, Wang R, Mikoryak CA, Pantano P, Draper RK. The impact of subcellular location on the near infrared-mediated thermal ablation of cells by targeted carbon nanotubes. NANOTECHNOLOGY 2016; 27:425102. [PMID: 27632056 PMCID: PMC5049696 DOI: 10.1088/0957-4484/27/42/425102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) are used in the near infrared (NIR)-mediated thermal ablation of tumor cells because they efficiently convert absorbed NIR light into heat. Despite the therapeutic potential of SWNTs, there have been no published studies that directly quantify how many SWNTs need be associated with a cell to achieve a desired efficiency of killing, or what is the most efficient subcellular location of SWNTs for killing cells. Herein we measured dose response curves for the efficiency of killing correlated to the measured amounts of folate-targeted SWNTs that were either on the surface or within the vacuolar compartment of normal rat kidney cells. Folate-targeted SWNTs on the cell surface were measured after different concentrations of SWNTs in medium were incubated with cells for 30 min at 4 °C. Folate-targeted SWNTs within the vacuolar compartments were measured after cells were incubated with different concentrations of SWNTs in medium for 6 h at 37 °C. It was observed that a SWNT load of ∼13 pg/cell when internalized was sufficient to kill 90% of the cells under standardized conditions of NIR light irradiation. When ∼3.5 pg/cell of SWNTs were internalized within the endosomal/lysosomal compartments, ∼50% of the cells were killed, but when ∼3.5 pg/cell of SWNTs were confined to the cell surface only ∼5% of the cells were killed under the same NIR irradiation conditions. The SWNT subcellular locations were verified using Raman imaging of SWNTs merged with fluorescence images of known subcellular markers. To our knowledge, this is the first time that SWNT amounts at known subcellular locations have been correlated with a dose-normalized efficacy of thermal ablation and the results support the idea that SWNTs confined to the plasma membrane are not as effective in NIR-mediated cell killing as an equivalent amount of SWNTs when internalized within the endosomal/lysosomal vesicles.
Collapse
Affiliation(s)
- Vasanth S. Murali
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Ruhung Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75080, United States
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Carole A. Mikoryak
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Paul Pantano
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, United States
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Rockford K. Draper
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75080, United States
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, United States
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080, United States
| |
Collapse
|
19
|
Neelgund GM, Oki AR. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 2016; 484:135-145. [PMID: 27599382 DOI: 10.1016/j.jcis.2016.07.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
Abstract
Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Aderemi R Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
20
|
Thapa RK, Choi JY, Poudel BK, Choi HG, Yong CS, Kim JO. Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy. Int J Nanomedicine 2016; 11:2799-813. [PMID: 27358565 PMCID: PMC4912319 DOI: 10.2147/ijn.s105401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Although different chemotherapeutic agents have been developed to treat cancers, their use can be limited by low cellular uptake, drug resistance, and side effects. Hence, targeted drug delivery systems are continually being developed in order to improve the efficacy of chemotherapeutic agents. The main aim of this study was to prepare folic acid (FA)-conjugated polyvinyl pyrrolidone-functionalized graphene oxides (GO) (FA-GO) for targeted delivery of sorafenib (SF). GO were prepared using a modified Hummer’s method and subsequently altered to prepare FA-GO and SF-loaded FA-GO (FA-GO/SF). Characterization of GO derivatives was done using ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, zeta potential measurements, and determination of in vitro drug release. Hemolytic toxicity, in vitro cytotoxicity, cellular uptake, and apoptotic effects of FA-GO/SF were also investigated. The results revealed that GO was successfully synthesized and that further transformation to FA-GO improved the stability and SF drug-loading capacity. In addition, the enhanced SF release under acidic conditions suggested possible benefits for cancer treatment. Conjugation of FA within the FA-GO/SF delivery system enabled targeted delivery of SF to cancer cells expressing high levels of FA receptors, thus increasing the cellular uptake and apoptotic effects of SF. Furthermore, the photothermal effect achieved by exposure of GO to near-infrared irradiation enhanced the anticancer effects of FA-GO/SF. Taken together, FA-GO/SF is a potential carrier for targeted delivery of chemotherapeutic agents in cancer.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea
| | - Ju Yeon Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea
| | - Bijay Kumar Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, South Korea
| |
Collapse
|
21
|
Eldridge BN, Bernish BW, Fahrenholtz CD, Singh R. Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space. ACS Biomater Sci Eng 2016; 2:963-976. [PMID: 27795996 DOI: 10.1021/acsbiomaterials.6b00052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and most lethal primary brain tumor with a 5 year overall survival rate of approximately 5%. Currently, no therapy is curative and all have significant side effects. Focal thermal ablative therapies are being investigated as a new therapeutic approach. Such therapies can be enhanced using nanotechnology. Carbon nanotube mediated thermal therapy (CNMTT) uses lasers that emit near infrared radiation to excite carbon nanotubes (CNTs) localized to the tumor to generate heat needed for thermal ablation. Clinical translation of CNMTT for GBM will require development of effective strategies to deliver CNTs to tumors, clear structure-activity and structure-toxicity evaluation, and an understanding of the effects of inherent and acquired thermotolerance on the efficacy of treatment. In our studies, we show that a dense coating of phospholipid-poly(ethylene glycol) on multiwalled CNTs (MWCNTS) allows for better diffusion through brain phantoms, while maintaining the ability to achieve ablative temperatures after laser exposure. Phospholipid-poly(ethylene glycol) coated MWCNTs do not induce a heat shock response (HSR) in GBM cell lines. Activation of the HSR in GBM cells via exposure to sub-ablative temperatures or short term treatment with an inhibitor of heat shock protein 90 (17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG)), induces a protective heat shock response that results in thermotolerance and protects against CNMTT. Finally, we evaluate the potential for CNMTT to treat GBM multicellular spheroids. These data provide pre-clinical insight into key parameters needed for translation of CNMTT including nanoparticle delivery, cytotoxicity, and efficacy for treatment of thermotolerant GBM.
Collapse
Affiliation(s)
- Brittany N Eldridge
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA
| | - Brian W Bernish
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA
| | - Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center of Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| |
Collapse
|
22
|
Petersen EJ, Flores-Cervantes DX, Bucheli TD, Elliott LCC, Fagan JA, Gogos A, Hanna S, Kägi R, Mansfield E, Montoro Bustos AR, Plata DL, Reipa V, Westerhoff P, Winchester MR. Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4587-605. [PMID: 27050152 PMCID: PMC4943226 DOI: 10.1021/acs.est.5b05647] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carbon nanotubes (CNTs) have numerous exciting potential applications and some that have reached commercialization. As such, quantitative measurements of CNTs in key environmental matrices (water, soil, sediment, and biological tissues) are needed to address concerns about their potential environmental and human health risks and to inform application development. However, standard methods for CNT quantification are not yet available. We systematically and critically review each component of the current methods for CNT quantification including CNT extraction approaches, potential biases, limits of detection, and potential for standardization. This review reveals that many of the techniques with the lowest detection limits require uncommon equipment or expertise, and thus, they are not frequently accessible. Additionally, changes to the CNTs (e.g., agglomeration) after environmental release and matrix effects can cause biases for many of the techniques, and biasing factors vary among the techniques. Five case studies are provided to illustrate how to use this information to inform responses to real-world scenarios such as monitoring potential CNT discharge into a river or ecotoxicity testing by a testing laboratory. Overall, substantial progress has been made in improving CNT quantification during the past ten years, but additional work is needed for standardization, development of extraction techniques from complex matrices, and multimethod comparisons of standard samples to reveal the comparability of techniques.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - D. Xanat Flores-Cervantes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Thomas D. Bucheli
- Agroscope, Institute of Sustainability Sciences ISS, 8046 Zurich, Switzerland
| | - Lindsay C. C. Elliott
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander Gogos
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Agroscope, Institute of Sustainability Sciences ISS, 8046 Zurich, Switzerland
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ralf Kägi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Elisabeth Mansfield
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Desiree L. Plata
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Box 3005, Tempe, Arizona 85278-3005, United States
| | - Michael R. Winchester
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
23
|
Kim J, Kim J, Jeong C, Kim WJ. Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 2016; 98:99-112. [PMID: 26748259 DOI: 10.1016/j.addr.2015.12.018] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.
Collapse
|
24
|
Jafari S, Maleki Dizaj S, Adibkia K. Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. ACTA ACUST UNITED AC 2015; 5:103-11. [PMID: 26191505 PMCID: PMC4492185 DOI: 10.15171/bi.2015.10] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The impermeability of biological membranes is a major obstacle in drug delivery; however, some peptides have transition capabilities of biomembranes. In recent decades, cell-penetrating peptides (CPPs) have been introduced as novel biocarriers that are able to translocate into the cells. CPPs are biologically potent tools for non-invasive cellular internalization of cargo molecules. Nevertheless, the non-specificity of these peptides presents a restriction for targeting drug delivery; therefore, a peptidic nanocarrier sensitive to matrix metalloproteinase (MMP) has been prepared, called activatable cell-penetrating peptide (ACPP). In addition to the cell-penetrating peptide dendrimer (DCPP), other analogues of CPPs have been synthesized. METHODS In this study, the most recent literature in the field of biomedical application of CPPs and their analogues, ACPP and DCCP, were reviewed. RESULTS This review focuses on CPP and its analogues, ACPP and DCPP, as novel nanocarriers for drug delivery. In addition, nanoconjugates and bioconjugates of these peptide sequences are discussed. CONCLUSION DCCP, branched CPPs, compared to linear peptides have advantages such as resistance to rapid biodegradation, high loading capacities and large-scale production capability.
Collapse
Affiliation(s)
- Samira Jafari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
26
|
Synthesis of 15P-conjugated PPy-modified gold nanoparticles and their application to photothermal therapy of ovarian cancer. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4039-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Levi-Polyachenko N, Young C, MacNeill C, Braden A, Argenta L, Reid S. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes. Int J Hyperthermia 2014; 30:490-501. [PMID: 25354678 PMCID: PMC11371122 DOI: 10.3109/02656736.2014.966790] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. MATERIALS AND METHODS Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. RESULTS Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. CONCLUSIONS The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.
Collapse
Affiliation(s)
- Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Christie Young
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Christopher MacNeill
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Amy Braden
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Louis Argenta
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Sean Reid
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| |
Collapse
|
28
|
Tharkar P, Madani AU, Lasham A, Shelling AN, Al-Kassas R. Nanoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2014; 23:97-108. [DOI: 10.3109/1061186x.2014.958844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Cacchioli A, Ravanetti F, Alinovi R, Pinelli S, Rossi F, Negri M, Bedogni E, Campanini M, Galetti M, Goldoni M, Lagonegro P, Alfieri R, Bigi F, Salviati G. Cytocompatibility and cellular internalization mechanisms of SiC/SiO2 nanowires. NANO LETTERS 2014; 14:4368-4375. [PMID: 25026180 DOI: 10.1021/nl501255m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
First evidence of in vitro cytocompatibility of SiC/SiO2 core-shell nanowires is reported. Different internalization mechanisms by adenocarcinomic alveolar basal epithelial cells, monocytic cell line derived from an acute monocytic leukemia, breast cancer cells, and normal human dermal fibroblasts are shown. The internalization occurs mainly for macropinocytosis and sporadically by direct penetration in all cell models considered, whereas it occurred for phagocytosis only in monocytic leukemia cells. The cytocompatibility of the nanowires is proved by the analysis of cell proliferation, cell cycle progression, and oxidative stress on the cells treated with NWs as compared to controls. Reactive oxygen species generation was detected as an early event that then quickly run out with a rapid decrease only in adenocarcinomic alveolar basal epithelial and human dermal fibroblasts cells. In all the cell lines, the intracellular presence of NWs induce the same molecular events but to a different extent: peroxidation of membrane lipids and oxidation of proteins. The NWs do not elicit either midterm (72 h) or long-term (10 days) cytotoxic activity leading to irreversible cellular damages or death. Our results are important in view of a possible use of SiC/SiO2 core-shell structures acting as biomolecule-delivery vectors or intracellular electrodes.
Collapse
Affiliation(s)
- A Cacchioli
- Department of Veterinary Science, Unit of Normal Veterinary Anatomy, University of Parma , Parma 43126, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chilek J, Wang R, Draper RK, Pantano P. Use of gel electrophoresis and Raman spectroscopy to characterize the effect of the electronic structure of single-walled carbon nanotubes on cellular uptake. Anal Chem 2014; 86:2882-7. [PMID: 24564772 PMCID: PMC3982961 DOI: 10.1021/ac403827m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/24/2014] [Indexed: 12/05/2022]
Abstract
It is well-known that the uptake of single-walled carbon nanotubes (SWNTs) by living cells depends on factors such as SWNT length and surface chemistry. Surprisingly, little is known about whether the electronic structure of a SWNT influences uptake. One reason for this has been the lack of methods to measure the uptake of SWNTs by cell populations. Previously, we developed a rapid, sensitive, and label-free sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) method for measuring the amount of SWNTs in lysates prepared from cultured cells ( Wang et al. Anal. Chem. 2009 , 81 , 2944 ). Herein, we describe the use of SDS-PAGE and microprobe Raman spectroscopy to detect and distinguish the electronic structure of SWNTs internalized by mammalian cells. Using normal rat kidney (NRK) cells and SWNTs dispersed with bovine serum albumin (BSA), we demonstrate that the method can detect both metallic and semiconducting SWNTs in lysates of cells that had internalized BSA-SWNTs and that the uptake of BSA-SWNTs by NRK cells is not influenced by SWNT electronic structure.
Collapse
Affiliation(s)
- Jennifer
L. Chilek
- Department of Chemistry, Department of Molecular and Cell Biology, and The Alan G. MacDiarmid
NanoTech Institute, The University of Texas
at Dallas, Richardson, Texas 75080, United
States
| | - Ruhung Wang
- Department of Chemistry, Department of Molecular and Cell Biology, and The Alan G. MacDiarmid
NanoTech Institute, The University of Texas
at Dallas, Richardson, Texas 75080, United
States
| | - Rockford K. Draper
- Department of Chemistry, Department of Molecular and Cell Biology, and The Alan G. MacDiarmid
NanoTech Institute, The University of Texas
at Dallas, Richardson, Texas 75080, United
States
| | - Paul Pantano
- Department of Chemistry, Department of Molecular and Cell Biology, and The Alan G. MacDiarmid
NanoTech Institute, The University of Texas
at Dallas, Richardson, Texas 75080, United
States
| |
Collapse
|
31
|
Bajaj P, Mikoryak C, Wang R, Bushdiecker II DK, Memon P, Draper RK, Dieckmann GR, Pantano P, Musselman IH. A carbon nanotube-based Raman-imaging immunoassay for evaluating tumor targeting ligands. Analyst 2014; 139:3069-76. [DOI: 10.1039/c4an00258j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Distribution of membrane receptors using targeting antibody immunoassay: (a) optical image; (b) G-band signal of carbon nanotubes as Raman label.
Collapse
Affiliation(s)
- Pooja Bajaj
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
| | - Carole Mikoryak
- Department of Molecular and Cell Biology
- The University of Texas at Dallas
- Richardson, USA
| | - Ruhung Wang
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
- Department of Molecular and Cell Biology
- The University of Texas at Dallas
| | | | - Pauras Memon
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
| | - Rockford K. Draper
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
- Department of Molecular and Cell Biology
- The University of Texas at Dallas
| | - Gregg R. Dieckmann
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
- The Alan G. MacDiarmid NanoTech Institute
- The University of Texas at Dallas
| | - Paul Pantano
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
- The Alan G. MacDiarmid NanoTech Institute
- The University of Texas at Dallas
| | - Inga H. Musselman
- Department of Chemistry
- The University of Texas at Dallas
- Richardson, USA
- The Alan G. MacDiarmid NanoTech Institute
- The University of Texas at Dallas
| |
Collapse
|
32
|
Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 2013; 65:2045-60. [PMID: 23933617 DOI: 10.1016/j.addr.2013.08.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/17/2023]
Abstract
Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single- and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs.
Collapse
|
33
|
Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 2013; 46:176-90. [DOI: 10.3109/03602532.2013.859688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Tian Y, Chen J, Zahtabi F, Keijzer R, Xing M. Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases. Pediatr Pulmonol 2013; 48:1098-111. [PMID: 23997035 DOI: 10.1002/ppul.22657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly emerging technology and represents an innovative field for therapy. Nanomaterials have intrinsically defined features for biomedical applications due to the high specific surface area, the amazing diversity, versatility in structure and function and the possibility of surface charge. In particular, the functionalization of targeting or stimuli-responsive unit on the surface of these materials gives them specific targeted therapeutic properties. There are many pediatric lung diseases that could potentially benefit from nanomedicine. Herein, we aim to review various drug carrier systems and release systems specifically targeting pediatric lung diseases. The injection of nanomedicine into in vivo models and their elimination will also be discussed. Finally, the potential toxicity of nanomaterials will be addressed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
35
|
Ilie I, Ilie R, Mocan T, Tabaran F, Iancu C, Mocan L. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. Int J Nanomedicine 2013; 8:3345-53. [PMID: 24039418 PMCID: PMC3770514 DOI: 10.2147/ijn.s48223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ioana Ilie
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Razvan Ilie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornel Iancu
- Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Mocan
- Third Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
36
|
Muñoz E, Sreelatha A, Garriga R, Baughman RH, Goux WJ. Amyloidogenic Peptide/Single-Walled Carbon Nanotube Composites Based on Tau-Protein-Related Peptides Derived from AcPHF6: Preparation and Dispersive Properties. J Phys Chem B 2013; 117:7593-604. [DOI: 10.1021/jp402057d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Edgar Muñoz
- Instituto de Carboquı́mica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza,
Spain
| | - Anju Sreelatha
- Department of Molecular
Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Rosa Garriga
- Departamento de Quı́mica
Fı́sica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | |
Collapse
|
37
|
Pryzhkova MV. Concise review: carbon nanotechnology: perspectives in stem cell research. Stem Cells Transl Med 2013; 2:376-83. [PMID: 23572053 DOI: 10.5966/sctm.2012-0151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbon nanotechnology has developed rapidly during the last decade, and carbon allotropes, especially graphene and carbon nanotubes, have already found a wide variety of applications in industry, high-tech fields, biomedicine, and basic science. Electroconductive nanomaterials have attracted great attention from tissue engineers in the design of remotely controlled cell-substrate interfaces. Carbon nanoconstructs are also under extensive investigation by clinical scientists as potential agents in anticancer therapies. Despite the recent progress in human pluripotent stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. However, acquired experience with and knowledge of carbon nanomaterials may be efficiently used in the development of future personalized medicine and in tissue engineering.
Collapse
|
38
|
Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 120:156-62. [DOI: 10.1016/j.jphotobiol.2012.12.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/03/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022]
|
39
|
Heister E, Brunner EW, Dieckmann GR, Jurewicz I, Dalton AB. Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1870-1891. [PMID: 23427832 DOI: 10.1021/am302902d] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon nanotubes and materials based on carbon nanotubes have many perceived applications in the field of biomedicine. Several highly promising examples have been highlighted in the literature, ranging from their use as growth substrates or tissue scaffolds to acting as intracellular transporters for various therapeutic and diagnostic agents. In addition, carbon nanotubes have a strong optical absorption in the near-infrared region (in which tissue is transparent), which enables their use for biological imaging applications and photothermal ablation of tumors. Although these advances are potentially game-changing, excitement must be tempered somewhat as several bottlenecks exist. Carbon nanotube-based technologies ultimately have to compete with and out-perform existing technologies in terms of performance and price. Moreover, issues have been highlighted relating to toxicity, which presents an obstacle for the transition from preclinical to clinical use. Although many studies have suggested that well-functionalized carbon nanotubes appear to be safe to the treated animals, mainly rodents, long-term toxicity issues remains to be elucidated. In this report, we systematically highlight some of the most promising biomedical application areas of carbon nanotubes and review the interaction of carbon nanotubes with cultured cells and living organisms with a particular focus on in vivo biodistribution and potential adverse health effects. To conclude, future challenges and prospects of carbon nanotubes for biomedical applications will be addressed.
Collapse
Affiliation(s)
- Elena Heister
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Chou HT, Wang TP, Lee CY, Tai NH, Chang HY. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:989-95. [PMID: 25427516 DOI: 10.1016/j.msec.2012.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/26/2012] [Accepted: 11/17/2012] [Indexed: 11/24/2022]
Abstract
Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell.
Collapse
Affiliation(s)
- Hung-Tao Chou
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan
| | - Tsung-Pao Wang
- Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan
| | - Chi-Young Lee
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan.
| |
Collapse
|
42
|
Salazar-Salinas K, Kubli-Garfias C, Seminario JM. Computational design of a CNT carrier for a high affinity bispecific anti-HER2 antibody based on trastuzumab and pertuzumab Fabs. J Mol Model 2012; 19:2797-810. [DOI: 10.1007/s00894-012-1638-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/07/2012] [Indexed: 12/25/2022]
|
43
|
Sheardy AT, Taylor JJ, Chilek JL, Li S, Wang R, Draper RK, Pantano P. STUDY OF THE NEAR INFRARED-MEDIATED HEATING OF DISPERSIONS OF PROTEIN-COATED PRISTINE AND CARBOXYLATED SINGLE-WALLED CARBON NANOTUBES. INTERNATIONAL JOURNAL OF NANOSCIENCE 2012; 11:1250034. [PMID: 23645950 PMCID: PMC3640612 DOI: 10.1142/s0219581x12500342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, we demonstrated the selective NIR-mediated ablation of tumor cells in vitro using pristine single-walled carbon nanotubes (SWNTs) with adsorbed tumor-targeting ligands and carboxylated SWNTs with covalently-attached ligands. The covalent approach is advantageous in ensuring that protein ligands remain associated with the NIR-absorbing SWNTs in biological matrices and the noncovalent approach has the advantage of enabling SWNT functionalization without perturbation of the SWNT lattice and photothermal properties. Herein, we compare the ability of moderately-carboxylated (~4 at.% carboxylic acid groups) and pristine SWNT materials to absorb 808 nm radiation and convert it to heat. Under conditions of a constant 808 nm laser power density, the approach involved measuring the temperature of aqueous dispersions of protein-coated SWNTs as a function of the irradiation time. Nearly identical temperature profiles were observed for dispersions of moderately-carboxylated and pristine SWNTs possessing matched 808 nm optical densities and equivalent concentrations of carbonaceous species (i.e., SWNTs and amorphous carbon impurities). The results indicate that the amount of carbonaceous species in purified dispersions of protein-coated SWNTs is more important for converting absorbed 808 nm radiation into heat than whether or not the SWNTs were moderately carboxylated, and that moderately-carboxylated SWNTs could be the SWNT-material of choice for the targeted photothermal ablation of tumor cells.
Collapse
Affiliation(s)
- Alex T. Sheardy
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Jeremy J. Taylor
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Jennifer L. Chilek
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Synyoung Li
- Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Ruhung Wang
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
- Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Rockford K. Draper
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
- Department of Molecular & Cell Biology, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
- The Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | - Paul Pantano
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
- The Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| |
Collapse
|
44
|
Xie B, Singh R, Torti FM, Keblinski P, Torti S. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers. Phys Med Biol 2012; 57:5765-75. [PMID: 22948207 DOI: 10.1088/0031-9155/57/18/5765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (∼ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ∼2 s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy.
Collapse
Affiliation(s)
- Bin Xie
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
45
|
Liao X, Zhang X. Preparation, characterization and cytotoxicity of carbon nanotube-chitosan-phycocyanin complex. NANOTECHNOLOGY 2012; 23:035101. [PMID: 22173212 DOI: 10.1088/0957-4484/23/3/035101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Photodynamic therapy (PDT) or photothermal therapy (PTT) using nanomaterials has shown great prospect for cancer treatment. Phycocyanin (PC) is a photoharvesting pigment and is also an attractive candidate for PDT. The multiwalled carbon nanotube (MWNT) is a potent candidate for PTT due to its extraordinary photo-to-thermal energy conversion efficiency upon excitation with near-infrared (NIR) light. To date, although MWNT-CS complexes have been well studied, no report about the reconjugation of MWNT-CS with phycocyanin is available in the literature. Here, by using water-soluble chitosan (CS), we prepared and characterized a novel biomaterial, MWNT-CS-PC, with the potential for PDT and PTT. The cytotoxicity experiments found that MWNT-CS-PC exhibited cell growth inhibition activity. Moreover, with irradiation of NIR light (808 nm) or visible light (532 nm), the photoinduced cytotoxicity was indeed enhanced. These results suggest that MWNT-CS-PC may potentially serve as a future photodynamic and photothermal therapy for cancer.
Collapse
Affiliation(s)
- Xiaoxia Liao
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, People's Republic of China
| | | |
Collapse
|
46
|
The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012; 33:2961-70. [PMID: 22245557 DOI: 10.1016/j.biomaterials.2011.12.052] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/30/2011] [Indexed: 11/19/2022]
Abstract
Breast tumors contain a small population of tumor initiating stem-like cells, termed breast cancer stem cells (BCSCs). These cells, which are refractory to chemotherapy and radiotherapy, are thought to persist following treatment and drive tumor recurrence. We examined whether BCSCs are similarly resistant to hyperthermic therapy, and whether nanoparticles could be used to overcome this resistance. Using a model of triple-negative breast cancer stem cells, we show that BCSCs are markedly resistant to traditional hyperthermia and become enriched in the surviving cell population following treatment. In contrast, BCSCs are sensitive to nanotube-mediated thermal treatment and lose their long-term proliferative capacity after nanotube-mediated thermal therapy. Moreover, use of this therapy in vivo promotes complete tumor regression and long-term survival of mice bearing cancer stem cell-driven breast tumors. Mechanistically, nanotube thermal therapy promotes rapid membrane permeabilization and necrosis of BCSCs. These data suggest that nanotube-mediated thermal treatment can simultaneously eliminate both the differentiated cells that constitute the bulk of a tumor and the BCSCs that drive tumor growth and recurrence.
Collapse
|
47
|
Iancu C, Mocan L. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int J Nanomedicine 2011; 6:1675-84. [PMID: 21904457 PMCID: PMC3160953 DOI: 10.2147/ijn.s23588] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carbon nanotubes (CNTs) are emerging versatile tools in nanomedicine applications, particularly in the field of cancer targeting. Due to diverse surface chemistry and unique thermal properties, CNTs can act as strong optical absorbers in near infrared light where biological systems prove to be highly transparent. The process of laser-mediated ablation of cancer cells marked with biofunctionalized CNTs is frequently termed "nanophotothermolysis." This paper illustrates the potential of engineered CNTs as laser-activated photothermal agents for the selective nanophotothermolysis of cancer cells.
Collapse
Affiliation(s)
- Cornel Iancu
- 3rd Surgery Clinic, Department of Nanomedicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | | |
Collapse
|