1
|
Gerrits L, Hammink R, Kouwer PHJ. Semiflexible polymer scaffolds: an overview of conjugation strategies. Polym Chem 2021. [DOI: 10.1039/d0py01662d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Semiflexible polymers are excellent scaffolds for the presentation of a wide variety of (bio)molecules. This manuscript reviews advantages and challenges of the most common conjugation strategies for the major classes of semiflexible polymers.
Collapse
Affiliation(s)
- Lotte Gerrits
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Roel Hammink
- Department of Tumor Immunology
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 GA Nijmegen
- The Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
2
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M. Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnostic Agents. Bioconjug Chem 2017; 29:657-671. [DOI: 10.1021/acs.bioconjchem.7b00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amlan Chakraborty
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jennifer C. Boer
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | | | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
3
|
Guryanov I, Polo F, Ubyvovk EV, Korzhikova-Vlakh E, Tennikova T, Rad AT, Nieh MP, Maran F. Polylysine-grafted Au 144 nanoclusters: birth and growth of a healthy surface-plasmon-resonance-like band. Chem Sci 2017; 8:3228-3238. [PMID: 28507699 PMCID: PMC5414598 DOI: 10.1039/c6sc05187a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
Poly(amino acid)-coated gold nanoparticles hold promise in biomedical applications, particularly because they combine the unique physicochemical properties of the gold core, excellent biocompatibility, and easy functionalization of the poly(amino acid)-capping shell. Here we report a novel method for the preparation of robust hybrid core-shell nanosystems consisting of a Au144 cluster and a densely grafted polylysine layer. Linear polylysine chains were grown by direct N-carboxyanhydride (NCA) polymerization onto ligands capping the gold nanocluster. The density of the polylysine chains and the thickness of the polymer layer strongly depend on the amount and concentration of the NCA monomer and the initiator. The optical spectra of the so-obtained core-shell nanosystems show a strong surface plasmon resonance (SPR)-like band at 531 nm. In fact, despite maintenance of the gold cluster size and the absence of interparticle aggregation, the polylysine-capped clusters behave as if they have a diameter nearly 4 times larger. To the best of our knowledge, this is the first observation of the growth of a fully developed, very stable SPR-like band for a gold nanocluster of such dimensions. The robust polylysine protective shell makes the nanoparticles very stable under conditions of chemical etching, in the presence of glutathione, and at different pH values, without gold core deshielding or alteration of the SPR-like band. This polymerization method can conceivably be extended to prepare core-shell nanosystems based on other mono- or co-poly(amino acids).
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry , St. Petersburg State University , 26 Universitetskij Pr., 198504 Petrodvorets , St. Petersburg , Russia .
| | - Federico Polo
- Department of Chemistry , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Evgeniy V Ubyvovk
- Department of Physics , St. Petersburg State University , 3 Ulyanovskaya, 198504 Petrodvorets , St. Petersburg , Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry , St. Petersburg State University , 26 Universitetskij Pr., 198504 Petrodvorets , St. Petersburg , Russia .
| | - Tatiana Tennikova
- Institute of Chemistry , St. Petersburg State University , 26 Universitetskij Pr., 198504 Petrodvorets , St. Petersburg , Russia .
| | - Armin T Rad
- Department of Biomedical Engineering , University of Connecticut , 260 Glenbrook Road , Storrs , Connecticut 06269 , USA
| | - Mu-Ping Nieh
- Polymer Program , Institute of Materials Science , University of Connecticut , 97 N. Eagleville Rd , Storrs , Connecticut 06269 , USA
- Department of Chemical & Biomolecular Engineering , University of Connecticut , 191 Auditorium Rd , Storrs , Connecticut 06269 , USA
| | - Flavio Maran
- Department of Chemistry , University of Padova , Via Marzolo 1 , 35131 Padova , Italy .
- Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , 06269 Connecticut , USA
| |
Collapse
|