1
|
Selective and Ultrasensitive Spectroscopic Detection of Mercuric Ion in Aqueous Systems Using Embonic Acid Functionalized Silver Nanoparticle. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Ajith MP, Pardhiya S, Prabhakar AK, Rajamani P. Ag@CDs nanohybrid: Fabrication, design of a multi-mode chemosensory probe for selective Fe 3+ detection and logic gate operation. CHEMOSPHERE 2022; 303:135090. [PMID: 35660397 DOI: 10.1016/j.chemosphere.2022.135090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, we propose a unique use of silver-carbon dot nanohybrid (Ag@CDs) with an average size of 16 nm as a multi-mode sensor for the selective detection of Fe3+ and the construction of logic gates based on these unique detection properties. The Ag NPs exhibit colourimetric sensing and fluorescence quenching in response to Fe3+ in the concentration range of 10-100 ppm, with the carbon dots acting as the fluorescent entity. Surprisingly, the nanohybrid was shown to have excellent sensitivity to Fe3+, resulting in aggregation and formation of yellowish-brown clumps. When the reaction mixture was treated with Fe3+, there was a discernible change in the colour of the assay mixture and fluorescence quenching. That is, the Ag@CDs acted as a calorimetric and fluorescence multi-mode sensor. Even in interfering groups in the natural river water sample, the produced nanohybrid displayed good selectivity towards Fe3+, with a minimum LOD of 0.76 ppm. Further, we constructed an advanced logic system, IMP-OR gate, by using additional inputs - ascorbic acid and urea.
Collapse
Affiliation(s)
- M P Ajith
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arun Kumar Prabhakar
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Construction of a Silver Nanoparticle Complex and its Application in Cancer Treatment. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-s8bc3p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicine has been used in tumor treatment and research due to its advantages of targeting, controlled release and high absorption rate. Silver nanoparticle (AgNPs), with the advantages of small particle size, and large specific surface area, are of great potential value in suppressing and killing cancer cells. Methods: AgNPs–polyethyleneimine (PEI) –folate (FA) (AgNPs–PF) were synthesised and characterised by several analytical techniques. The ovarian cancer cell line Skov3 was used as the cell model to detect the tumor treatment activity of AgNPs, AgNPs–PF and AgNPs+ AgNPs–PF. Results: Results shown that AgNPs–PF were successfully constructed with uniform particle size of 50–70 nm. AgNPs, AgNPs–PF, AgNPs–PF+ AgNPs all showed a certain ability to inhibit cancer cell proliferation, increase reactive oxygen species and decrease the mitochondrial membrane potential. All AgNPs, AgNPs–PF, AgNPs+ AgNPs–PF promoted DNA damage in Skov3 cells, accompanied by the generation of histone RAD51 and γ-H2AX site, and eventually leading to the apoptosis of Skov3 cells. The combination of AgNPs–PF and AgNPs had a more pronounced effect than either material alone. Conclusion: This study is to report that the combination of AgNPs+ AgNPs–PF can cause stronger cytotoxicity and induce significantly greater cell death compared to AgNPs or AgNPs–PF alone in Skov3 cells. Therefore, the combined application of drugs could be the best way to cancer treatment.
Collapse
|
4
|
Pang J, Xie R, Chua S, Zou Y, Tang M, Zhang F, Chai F. Preparation of fluorescent bimetallic silver/copper nanoparticles and their utility of dual-mode fluorimetric and colorimetric probe for Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120035. [PMID: 34126396 DOI: 10.1016/j.saa.2021.120035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
A dual-mode colorimetric and fluorimetric probe was successfully established based on silver/copper bimetallic nanoparticles (AgCu-BNPs). The AgCu-BNPs were confirmed as individually bimetallic nanoparticles with a mean size of 7.7 ± 0.2 nm, as characterized by high resolution transmission electron microscopy. Intriguingly, the AgCu-BNPs possess both surface plasmon resonances (SPR) and fluorescence emission. AgCu-BNPs emanate bright blue fluorescence with optical emission centered at 442 nm with high quantum yield of 30.3%, and AgCu-BNPs were attenuated or even quenched by Hg2+ via both static and dynamic quenching, coincidently accompanied by a visible color change, which endow AgCu-BNPs a unique utility as dual-mode colorimetric and fluorimetric probes. The detection limits as low as 89 nM and 9 nM were determined by dual-mode of AgCu-BNPs, respectively. The recovery rates in real samples were found to be 97.3-118.8%, and 89.5-112.7% by colorimetric and fluorescent methods separately, demonstrates the good environmental tolerance of the dual-mode probe.
Collapse
Affiliation(s)
- Jingyu Pang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Sophie Chua
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Zou
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Mingyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Fang Zhang
- Beibu Gulf Institute of Marine Advanced Materials, Beihai 536015, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China; Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| |
Collapse
|
5
|
Xie R, Qu Y, Tang M, Zhao J, Chua S, Li T, Zhang F, E H Wheatley A, Chai F. Carbon dots-magnetic nanocomposites for the detection and removal of Hg 2. Food Chem 2021; 364:130366. [PMID: 34175618 DOI: 10.1016/j.foodchem.2021.130366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
The dual functional detection and removal of heavy ion metals by carbon dots has become an urgent matter of concern. Here, a unique fluorescent carbon dot-magnetic nanocomposite (Fe3O4/CDs) was prepared by hydrothermal methods for sensitive detection of Hg2+. The Fe3O4/CDs serve as fluorescent probes with higher selectivity and sensitivity for Hg2+, with the lowest detectable limit of 0.3 nM. Hg2+ statically quenched the blue emission of Fe3O4/CDs, which can be restored in the presence of saturated EDTA solution. The utilization of Fe3O4/CDs was fulfilled by recovering their emission conveniently. The recovery of Hg2+ in Chagan Lake water, tap water and drinks was calculated at 96.5 ~ 108.8%, which demonstrates the feasibility of the Fe3O4/CDs sensing system in natural samples. Notably, the Fe3O4/CDs can drive the effective removal of Hg2+ from samples, which is of outstanding significance as a promising probe in environmental monitoring.
Collapse
Affiliation(s)
- Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yaoyao Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Mingyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jingqiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Sophie Chua
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Tingting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Fang Zhang
- Beibu Gulf Institute of Marine Advanced Materials, Beihai, 536015, China.
| | - Andrew E H Wheatley
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China; Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| |
Collapse
|
6
|
Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A, Kolivoška V. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J Fluoresc 2021; 31:635-649. [PMID: 33609215 DOI: 10.1007/s10895-021-02699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/24/2022]
Abstract
Nanoscience is a multifaceted field which encompasses metal nanoparticles (MNPs) having novel and size-related optical properties significantly different from the bulk level as well as at the atomic level. Amongst noble MNPs, the silver nanoparticles (AgNPs) have unique properties for metal interaction. Presently, there have been expedite reports which are taken under the review in virtue of sensing the mercury ions in aqueous media. Mercury dissemination in various forms contaminates the ecosystem. Globally mercury is ranked as the most toxic element and an urgent threat to humans since it causes major health issues. Employing MNPs, especially AgNPs for the detection of mercury ions is the economic, handy and apt method in contrast to time-consuming methods that use expensive instrumentations. The review highlights a study of colorimetric and fluorimetric detection of the level of Hg (II) ions in aqueous media selectively with high sensitivity in different courses of conditions using AgNPs synthesized by various approaches. Graphical abstract.
Collapse
Affiliation(s)
- Nandan C Pomal
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Keyur D Bhatt
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Krunal M Modi
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Ajay L Desai
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Nihal P Patel
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223, Prague, Czech Republic.
| |
Collapse
|
7
|
Kokilavani S, Syed A, Thomas AM, Elgorban AM, Bahkali AH, Marraiki N, Raju LL, Das A, Khan SS. Development of multifunctional Cu sensitized Ag-dextran nanocomposite for selective and sensitive detection of mercury from environmental sample and evaluation of its photocatalytic and anti-microbial applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Pang Y, Chen Z, Zhao R, Yi C, Qiu X, Qian Y, Lou H. Facile synthesis of easily separated and reusable silver nanoparticles/aminated alkaline lignin composite and its catalytic ability. J Colloid Interface Sci 2020; 587:334-346. [PMID: 33370659 DOI: 10.1016/j.jcis.2020.11.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) has received increasing attention. In this study, AgNPs were prepared through in-situ reduction by aminated alkaline lignin (AAL). Compared with alkaline lignin (AL), AAL exhibited stronger reduction capacity (increased by 36%) due to the introduced amine groups and better water solubility. Moreover, the coordination effect of amine groups on AAL improved the binding force between lignin and AgNPs. The content of AgNPs in AgNPs/AAL composite were 2.4 times higher than that in AgNPs/AL, such content could be further increased through increasing the reduction pH or prolonging the heating time. The results of XPS, XRD and TEM showed that the AgNPs were spherical and monodisperse with an average particle size about 17 nm. Additionally, the size of AgNPs was affected by the amination degree of lignin. AgNPs/AAL exhibited good catalytic performance for the reduction of 4-nitrophenol to 4-aminophenol, and this compound could be easily recovered and reused for at least eight cycles.
Collapse
Affiliation(s)
- Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Zhengsong Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Rubin Zhao
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Wang Z, Li S, Zhou C, Sun Y, Pang H, Liu W, Li X. Ratiometric fluorescent nanoprobe based on CdTe/SiO 2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Mikrochim Acta 2020; 187:665. [PMID: 33205310 DOI: 10.1007/s00604-020-04628-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
A sensitive and robust fluorescent assay of 6-MP is described which relies on the facile assembly of a fluorescence nanoprobe by design of silica nanosphere encapsulated CdTe quantum dots (CdTe QDs) as scaffold, coupling with chemically tethered folic acid (FA)-protected silver nanoparticles (AgNPs) that function as responsive element. In this way a stable ternary core-shell-satellite nanostructure with dual-emission signals can be established. On binding to the target molecules, 6-MP, FA molecules initially occupied by AgNPs are liberated to give dose-dependent fluorescence emission, which can further form a self-calibration ratiometric fluorescence assay using CdTe QDs as an internal reference. The nanoprobe color vividly changes from red to blue, enabling the direct visual detection. The linear concentration range is 0.15~50 μM with the detection limit of 67 nM. By virtue of the favorable selectivity and robust assays, the nanoprobe was applied to 6-MP detection in urine samples, with recoveries from 97.3 to 106% and relative standard deviations (RSD) less than 5%. Graphical abstract.
Collapse
Affiliation(s)
- Zhao Wang
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Shuting Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chunyan Zhou
- Inorganic Chemistry Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yingying Sun
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Hui Pang
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530031, People's Republic of China
| | - Wei Liu
- Biopharmaceutics and Pharmacokinetics Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xinchun Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
10
|
Li J, Wang H, Li Z, Su Z, Zhu Y. Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors. SENSORS 2020; 20:s20185155. [PMID: 32927607 PMCID: PMC7570743 DOI: 10.3390/s20185155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
In recent years, surface plasmon resonance devices (SPR, or named plamonics) have attracted much more attention because of their great prospects in breaking through the optical diffraction limit and developing new photons and sensing devices. At the same time, the combination of SPR and optical fiber promotes the development of the compact micro-probes with high-performance and the integration of fiber and planar waveguide. Different from the long-range SPR of planar metal nano-films, the local-SPR (LSPR) effect can be excited by incident light on the surface of nano-scaled metal particles, resulting in local enhanced light field, i.e., optical hot spot. Metal nano-particles-modified optical fiber LSPR sensor has high sensitivity and compact structure, which can realize the real-time monitoring of physical parameters, environmental parameters (temperature, humidity), and biochemical molecules (pH value, gas-liquid concentration, protein molecules, viruses). In this paper, both fabrication and application of the metal nano-particles modified optical fiber LSPR sensor probe are reviewed, and its future development is predicted.
Collapse
Affiliation(s)
- Jin Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
- Correspondence:
| | - Haoru Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhi Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Zhengcheng Su
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| | - Yue Zhu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; (H.W.); (Z.L.); (Z.S.); (Y.Z.)
| |
Collapse
|
11
|
Karuppaiah A, Rajan R, Hariharan S, Balasubramaniam DK, Gregory M, Sankar V. Synthesis and Characterization of Folic Acid Conjugated Gemcitabine Tethered Silver Nanoparticles (FA-GEM-AgNPs) for Targeted Delivery. Curr Pharm Des 2020; 26:3141-3146. [DOI: 10.2174/1381612826666200316143239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Silver nanoparticles (AgNPs) have attracted considerable interest in the medical industry
due to their physicochemical properties, small size, and surface plasmon behavior. Their smaller particle size and
instability in blood circulation leads to toxicity due to its aggregation as Ag+ ions and accumulation at the deepseated
organ. In the present study, we aimed at reducing the toxicity of AgNPs by conjugation with an anticancer
drug GEM and to improve their internalization through folate receptors-mediated endocytosis by capping the
nanoparticles with folic acid (FA).
Methods:
One-pot facile synthesis of FA capped silver nanoparticles (FA-AgNPs) has been achieved by using FA
as a reducing agent. FA-AgNPs were mixed with Gemcitabine (GEM) to obtain tethered FA-GEM-AgNPs.
Nanoparticles were characterized by Dynamic Light Scattering (DLS), UV-Visible spectroscopy, Transmission
Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX), Selected Area Electron Diffraction
(SAED), and Atomic Absorption Spectroscopy (AAS). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was carried out to determine the cytotoxic effect of the prepared nanoformulations. The
apoptotic cell death induced by FA-GEM-AgNPs in breast cancer cells were monitored with Acridine orange
(AO)/Ethidium Bromide (EtBr) staining.
Conclusion:
Compared to GEM and AgNPs, FA-GEM-AgNPs showed enhanced cytotoxic effect and internalization
in MDA-MB-453 breast cancer cell line. FA-GEM-AgNPs could be an ideal candidate for targeting cancer
cells via folate receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Arjunan Karuppaiah
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu, India
| | - Ravikumar Rajan
- Department of pharmacology, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India
| | - Sivaram Hariharan
- Department of pharmaceutical chemistry, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India
| | - Dinesh K. Balasubramaniam
- Department of pharmaceutics, St James College of Pharmaceutical sciences, Chalakudi 680 307, Kerala, India
| | - Marslin Gregory
- Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, Tamil Nadu, India
| | - Veintramuthu Sankar
- Department of pharmaceutics, PSG College of Pharmacy, Coimbatore 641 004, Tamil Nadu, India, Affiliated to TN Dr. M.G.R Medical University, Guindy, Chennai 600032, Tamil Nadu, India
| |
Collapse
|
12
|
Li L, Qiu Y, Feng Y, Li Y, Wu K, Zhu L. Stripping voltammetric analysis of mercury ions at nitrogen-doped reduced graphene oxide modified electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Xie R, Wei T, Bai S, Wang Z, Chai F, Chen L, Zang S. The synthesis and catalytic activity of bimetallic CuAg nanoparticles and their magnetic hybrid composite materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj02148b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic CuAg nanoparticles were synthesized using uric acid as a stabilizer, Fe3O4 loaded CuAg nanoparticles (Fe3O4–CuAg NPs) were also fabricated, and the morphology and content of both CuAg NPs and Fe3O4–CuAg NPs were investigated.
Collapse
Affiliation(s)
- Ruifeng Xie
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions
- Harbin Normal University
- Harbin
- P. R. China
| | - Te Wei
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
| | - Shuang Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
| | - Zhida Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province; Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Harbin Normal University
| | - Lihua Chen
- Shandong Key Laboratory of Biochemical Analysis
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions
- Harbin Normal University
- Harbin
- P. R. China
| |
Collapse
|
14
|
Pinilla AM, Blach D, Mendez SC, Ortega FM. AOT direct and reverse micelles as a reaction media for anisotropic silver nanoparticles functionalized with folic acid as a photothermal agent on HeLa cells. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0894-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Olenin AY. Chemically Modified Silver and Gold Nanoparticles in Spectrometric Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Eksin E, Erdem A, Fafal T, Kıvçak B. Eco‐friendly Sensors Developed by Herbal Based Silver Nanoparticles for Electrochemical Detection of Mercury (II) Ion. ELECTROANAL 2019. [DOI: 10.1002/elan.201800776] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ece Eksin
- Analytical Chemistry Department, Faculty of PharmacyEge University 35100, Bornova Izmir Turkey
- The Institute of Natural and Applied Sciences, Biotechnology DepartmentEge University 35100, Bornova Izmir Turkey
| | - Arzum Erdem
- Analytical Chemistry Department, Faculty of PharmacyEge University 35100, Bornova Izmir Turkey
- The Institute of Natural and Applied Sciences, Biotechnology DepartmentEge University 35100, Bornova Izmir Turkey
| | - Tugce Fafal
- Pharmacognosy Department, Faculty of PharmacyEge University 35100, Bornova Izmir Turkey
| | - Bijen Kıvçak
- Pharmacognosy Department, Faculty of PharmacyEge University 35100, Bornova Izmir Turkey
| |
Collapse
|
17
|
Olenin AY, Lisichkin GV. Preparation and Use of Chemically Modified Noble Metal Nanoparticles. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s107042721809001x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Kanellis VG. Sensitivity limits of biosensors used for the detection of metals in drinking water. Biophys Rev 2018; 10:1415-1426. [PMID: 30225681 PMCID: PMC6233349 DOI: 10.1007/s12551-018-0457-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Even when present in very low concentrations, certain metal ions can have significant health impacts depending on their concentration when present in drinking water. In an effort to detect and identify trace amounts of such metals, environmental monitoring has created a demand for new and improved methods that have ever-increasing sensitivities and selectivity. This paper reviews the sensitivities of over 100 recently published biosensors using various analytical techniques such as fluorescence, voltammetry, inductively coupled plasma techniques, spectrophotometry and visual colorimetric detection that display selectivity for copper, cadmium, lead, mercury and/or aluminium in aqueous solutions.
Collapse
|
19
|
Marimuthu V, Chandirasekar S, Rajendiran N. Green Synthesis of Sodium Cholate Stabilized Silver Nanoparticles: An Effective Colorimetric Sensor for Hg2+
and Pb2+
Ions. ChemistrySelect 2018. [DOI: 10.1002/slct.201800219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vanitha Marimuthu
- Department of Polymer Science; University of Madras; Guindy Campus; Chennai-25 Tamil Nadu India
| | - Shanmugam Chandirasekar
- Department of Chemistry; Indian Institute of Technology-Madras (IIT−M); Chennai-36 Tamil Nadu India
| | - Nagappan Rajendiran
- Department of Polymer Science; University of Madras; Guindy Campus; Chennai-25 Tamil Nadu India
| |
Collapse
|
20
|
|
21
|
Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ. A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron 2017. [DOI: 10.1016/j.bios.2017.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|