1
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
2
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
3
|
Ding H, Yang X, Wei Y. Fusion Proteins of NKG2D/NKG2DL in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19010177. [PMID: 29316666 PMCID: PMC5796126 DOI: 10.3390/ijms19010177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/25/2023] Open
Abstract
NKG2D (natural killer group 2, member D) is an important activating receptor in natural killer (NK) cells and some T cells. NKG2D ligands (NKG2DLs) are specifically expressed on most tumor cells. The engagement of these ligands on tumor cells to NKG2D on NK cells will induce cell-mediated cytotoxicity and have target cells destroyed. This gives NKG2D/NKG2DLs great potential in cancer therapeutic application. The creation of NKG2D/NKG2DL-based multi-functional fusion proteins is becoming one of the most promising strategies in immunotherapy for cancer. Antibodies, cytokines, and death receptors have been fused with NKG2D or its ligands to produce many powerful fusion proteins, including NKG2D-based chimeric antigen receptors (CARs). In this article, we review the recent developments of the fusion proteins with NKG2D/NKG2DL ligands in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Ding
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC 29634, USA.
| | - Xi Yang
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC 29634, USA.
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC 29634, USA.
| |
Collapse
|
4
|
Yan C, Jie L, Yongqi W, Weiming X, Juqun X, Yanbing D, Li Q, Xingyuan P, Mingchun J, Weijuan G. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. Biochem Biophys Res Commun 2015; 463:336-43. [PMID: 26022121 DOI: 10.1016/j.bbrc.2015.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/15/2015] [Indexed: 01/22/2023]
Abstract
Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8(+) T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy.
Collapse
Affiliation(s)
- Chen Yan
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Leng Jie
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Wang Yongqi
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Xiao Weiming
- Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009, PR China
| | - Xi Juqun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009, PR China
| | - Ding Yanbing
- Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009, PR China
| | - Qian Li
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Pan Xingyuan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China
| | - Ji Mingchun
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Gong Weijuan
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, PR China; Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|