1
|
Liu T, Liu X, Feng Y, Yao CJ. Advances in plasmonic enhanced luminenscence of upconversion nanoparticles. MATERIALS TODAY CHEMISTRY 2023; 34:101788. [DOI: 10.1016/j.mtchem.2023.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Fan Q, Sun C, Hu B, Wang Q. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Mater Today Bio 2023; 20:100646. [PMID: 37214552 PMCID: PMC10195989 DOI: 10.1016/j.mtbio.2023.100646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Lanthanide nanomaterials have garnered significant attention from researchers among the main near-infrared (NIR) fluorescent nanomaterials due to their excellent chemical and fluorescence stability, narrow emission band, adjustable luminescence color, and long lifetime. In recent years, with the preparation, functional modification, and fluorescence improvement of lanthanide materials, great progress has been made in their application in the biomedical field. This review focuses on the latest progress of lanthanide nanomaterials in tumor diagnosis and treatment, as well as the interaction mechanism between fluorescence and biological tissues. We introduce a set of efficient strategies for improving the fluorescence properties of lanthanide nanomaterials and discuss some representative in-depth research work in detail, showcasing their superiority in early detection of ultra-small tumors, phototherapy, and real-time guidance for surgical resection. However, lanthanide nanomaterials have only realized a portion of their potential in tumor applications so far. Therefore, we discuss promising methods for further improving the performance of lanthanide nanomaterials and their future development directions.
Collapse
Affiliation(s)
- Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Bingliang Hu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| |
Collapse
|
3
|
Gu M, Li W, Jiang L, Li X. Recent Progress of Rare Earth Doped Hydroxyapatite Nanoparticles: Luminescence Properties, Synthesis and Biomedical Applications. Acta Biomater 2022; 148:22-43. [PMID: 35675891 DOI: 10.1016/j.actbio.2022.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are host materials and can be modified with various substrates and dopants. Among them, rare earth (RE) ions doped HAP NPs have gathered attention due to their unique physicochemical and imaging properties. Compared to other fluorescence probes, RE-doped HAP NPs display advantages in high brightness, high contrast, photostability, nonblinking, and narrow emission bands. Meanwhile, their intrinsic features (composition, morphology, size, crystallinity, and luminescence intensity) can be adjusted by changing the dopant ratio, synthesizing temperature, reaction time, and techniques. And they have been used in various biomedical applications, including imaging probe, drug delivery, bone tissue engineering, and antibacterial studies. This review surveys the luminescent properties, fluorescence enhancement, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications. For this literature review, an electronic search was conducted in the Pubmed, Web of Science, Google Scholar, Scopus and SciFinder databases, using the keywords: hydroxyapatite, rare earth, lanthanide, fluorescence, and imaging. Literature searches of English-language publications from 1979 with updates through April, 2022, and a total of 472 potential papers were identified. In addition, a few references were located by noting their citation in other studies reviewed. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HAP NPs) have a broad range of promising biological applications. Although prospective biomedical applications are not limited to rare earth-doped hydroxyapatite nanoparticles (RE-doped HAP NPs), some cases do make use of the distinctive features of RE-elements to achieve the expected functions for HAP families. This review surveys the luminescent properties, synthetic methods, and biocompatibility of various RE-doped HAP NPs consolidated from different research works, for their employments in biomedical applications, including imaging probe, drug delivery, bone tissue repair and tracking, and anti-bacteria. Overall, we expect to shed some light on broadening the research and application of RE-doped HAP NPs in biomedical field.
Collapse
|
4
|
Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chem Rev 2021; 121:9165-9195. [PMID: 34327987 DOI: 10.1021/acs.chemrev.1c00034] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet-triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.
Collapse
Affiliation(s)
- Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Wu Y, Lai F, Liu B, Li Z, Liang T, Qiang Y, Huang J, Ye X, You W. Energy transfer and cross-relaxation induced multicolor upconversion emissions in Er3+/Tm3+/Yb3+ doped double perovskite La2ZnTiO6 phosphors. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Wirth J, Green KK, O'Connor M, Lim SF. Enhancement of Upconverted Fluorescence by Interference Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602846. [PMID: 27911473 DOI: 10.1002/smll.201602846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Upconverting nanoparticles show potential applications in the field of photovoltaics and array-based detection devices. While fluorescence enhancement using interference of incident radiation is well known in Stokes-shift type systems such as fluorescent dyes; the effect of such interference geometry in nonlinear Anti-Stokes type emission, such as in upconversion rare earth photophysics is demonstrated for the first time. This work describes in detail the influence of the interference modulation on both the excitation (interion energy transfer) and radiative decay with nonradiative decay processes active between emissive levels. These effects are illustrated in the thickness dependence of the decay rate and rise time. Single particle upconverted spectra and time-resolved measurements show concurrent optimization of the infrared absorption and emission at 540 and 650 nm, with an average enhanced emission of 20 times at λ = 540 and 45 times at λ = 650 nm, dependent on the interference layer thickness and on the excitation intensity. The experimental results are correlated with finite element modeling. Both experiments and calculations show emission enhancement at an interference layer thickness of about 740 ± 20 nm, where such tolerance and the planar design, leads to ease in implementation in applications.
Collapse
Affiliation(s)
- Janina Wirth
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kory K Green
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Megan O'Connor
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shuang F Lim
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
7
|
Li AH, Lü M, Guo L, Sun Z. Enhanced Upconversion Luminescence of Metal-Capped NaGd0.3 Yb0.7 F4:Er Submicrometer Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2092-2098. [PMID: 26938293 DOI: 10.1002/smll.201502934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Metallic nanostructures are often used to enhance photoluminescence of nanomaterials based on local field enhancement with plasmons at metal surfaces. Here upconversion luminescence (UCL) enhancement of submicrometer-size NaGd0.3 Yb0.7 F4 :Er particles in cap-like metal cavities, formed by deposition of a silver film on the particles dispersed on glass substrates, is studied. UCL of the particles is shown to be influenced by not only the plasmon-enhanced local field but also the cavity modes. By varying the cavity size and location of the particles in the cavities, fluctuant variations of the UCL enhancement and electronic depopulation rate are observed in experiments. Typically, a maximum of 12-fold enhancement of the UCL intensity is obtained. Combining the results with numerical simulations, the phenomenon is ascribed to effects of metal quenching, plasmonic field enhancement, and the cavity modes for the excitation and emission photons. Finally it is verified that, for the cap-like submicrometer metal cavities, allocating the particles at the open mouths of the cavities is more advantageous to obtaining stronger enhancements of the particles' UCL. And the demonstrated structure is also convenient to fabricate for applications, e.g., in solar cells.
Collapse
Affiliation(s)
- Ai-Hua Li
- Department of Physics, OSED Center, Xiamen University, 422-19 South Siming Road, Xiamen, Fujian, 361005, China
| | - Mengyun Lü
- Department of Physics, OSED Center, Xiamen University, 422-19 South Siming Road, Xiamen, Fujian, 361005, China
| | - Ling Guo
- Department of Physics, OSED Center, Xiamen University, 422-19 South Siming Road, Xiamen, Fujian, 361005, China
| | - Zhijun Sun
- Department of Physics, OSED Center, Xiamen University, 422-19 South Siming Road, Xiamen, Fujian, 361005, China
| |
Collapse
|