Manipulation and Applications of Hotspots in Nanostructured Surfaces and Thin Films.
NANOMATERIALS 2020;
10:nano10091667. [PMID:
32858806 PMCID:
PMC7557400 DOI:
10.3390/nano10091667]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The synthesis of nanostructured surfaces and thin films has potential applications in the field of plasmonics, including plasmon sensors, plasmon-enhanced molecular spectroscopy (PEMS), plasmon-mediated chemical reactions (PMCRs), and so on. In this article, we review various nanostructured surfaces and thin films obtained by the combination of nanosphere lithography (NSL) and physical vapor deposition. Plasmonic nanostructured surfaces and thin films can be fabricated by controlling the deposition process, etching time, transfer, fabrication routes, and their combination steps, which manipulate the formation, distribution, and evolution of hotspots. Based on these hotspots, PEMS and PMCRs can be achieved. This is especially significant for the early diagnosis of hepatocellular carcinoma (HCC) based on surface-enhanced Raman scattering (SERS) and controlling the growth locations of Ag nanoparticles (AgNPs) in nanostructured surfaces and thin films, which is expected to enhance the optical and sensing performance.
Collapse