1
|
Wang Y, Xie W, Peng W, Li F, He Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. MICROMACHINES 2022; 14:mi14010047. [PMID: 36677109 PMCID: PMC9860666 DOI: 10.3390/mi14010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/02/2023]
Abstract
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human-machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal-semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms' analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting.
Collapse
Affiliation(s)
- Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wanli Xie
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
2
|
Jayathilaka WADM, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C, Wang H, He J, Cui S, Thomas SW, Ramakrishna S. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805921. [PMID: 30589117 DOI: 10.1002/adma.201805921] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Indexed: 05/05/2023]
Abstract
Together with the evolution of digital health care, the wearable electronics field has evolved rapidly during the past few years and is expected to be expanded even further within the first few years of the next decade. As the next stage of wearables is predicted to move toward integrated wearables, nanomaterials and nanocomposites are in the spotlight of the search for novel concepts for integration. In addition, the conversion of current devices and attachment-based wearables into integrated technology may involve a significant size reduction while retaining their functional capabilities. Nanomaterial-based wearable sensors have already marked their presence with a significant distinction while nanomaterial-based wearable actuators are still at their embryonic stage. This review looks into the contribution of nanomaterials and nanocomposites to wearable technology with a focus on wearable sensors and actuators.
Collapse
Affiliation(s)
| | - Kun Qi
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- School of Textile and Clothing, Jiangnan University, Wuxi, 214122, China
| | - Yanli Qin
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| | - William Serrano-García
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
- Advanced Materials Bio & Integration Research Laboratory, Department of Electrical Engineering, University of South Florida - Tampa, FL, 33620, USA
| | - Chinnappan Baskar
- THDC Institute of Hydropower Engineering and Technology Tehri, Uttarakhand Technical University, Dehradun, Uttarakhand, 248007, India
| | - Hongbo Wang
- School of Textile and Clothing, Jiangnan University, Wuxi, 214122, China
| | - Jianxin He
- Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou, Henan, 450007, China
- Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
| | - Shizhong Cui
- Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
| | - Sylvia W Thomas
- Advanced Materials Bio & Integration Research Laboratory, Department of Electrical Engineering, University of South Florida - Tampa, FL, 33620, USA
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 119260, Singapore
| |
Collapse
|
3
|
El Kacimi A, Pauliac-Vaujour E, Eymery J. Flexible Capacitive Piezoelectric Sensor with Vertically Aligned Ultralong GaN Wires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4794-4800. [PMID: 29338171 DOI: 10.1021/acsami.7b15649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report a simple and scalable fabrication process of flexible capacitive piezoelectric sensors using vertically aligned gallium nitride (GaN) wires as well as their physical principles of operation. The as-grown N-polar GaN wires obtained by self-catalyst metal-organic vapor phase epitaxy are embedded into a polydimethylsiloxane (PDMS) matrix and directly peeled off from the sapphire substrate before metallic electrode contacting. This geometry provides an efficient control of the wire orientation and an additive contribution of the individual piezoelectric signals. The device output voltage and efficiency are studied by finite element calculations for compression mechanical loading as a function of the wire geometrical growth parameters (length and density). We demonstrate that the voltage output level and sensitivity increases as a function of the wire length and that a conical shape is not mandatory for potential generation as it was the case for horizontally assembled devices. The optimal design to improve the overall device response is also optimized in terms of wire positioning inside PDMS, wire density, and total device thickness. Following the results of these calculations, we have fabricated experimental devices exhibiting outputs of several volts with a very good reliability under cyclic mechanical excitation.
Collapse
Affiliation(s)
- Amine El Kacimi
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus , 38000 Grenoble, France
| | | | - Joël Eymery
- Nanostructures and Synchrotron Radiation Laboratory, Univ. Grenoble Alpes, CEA, INAC-MEM , 38000 Grenoble, France
| |
Collapse
|
4
|
Yao S, Swetha P, Zhu Y. Nanomaterial-Enabled Wearable Sensors for Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193793 DOI: 10.1002/adhm.201700889] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/17/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering North Carolina State University Raleigh NC 27695‐7910 USA
| | - Puchakayala Swetha
- Department of Mechanical and Aerospace Engineering North Carolina State University Raleigh NC 27695‐7910 USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering North Carolina State University Raleigh NC 27695‐7910 USA
| |
Collapse
|
5
|
Chung SY, Lee HJ, Lee TI, Kim YS. A wearable piezoelectric bending motion sensor for simultaneous detection of bending curvature and speed. RSC Adv 2017. [DOI: 10.1039/c6ra25797f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A wearable piezoelectric bending motion sensor for simultaneous detection of bending curvature and speed was successfully developed via analysis of bending motions of piezoelectric elements. This bending sensor is applicable to artificial skin.
Collapse
Affiliation(s)
- Sung Yun Chung
- Program in Nano Science and Technology
- Graduate School of Convergence Science and Technology
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Hwa-Jin Lee
- Program in Nano Science and Technology
- Graduate School of Convergence Science and Technology
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Tae Il Lee
- Department of Bio-Nanotechnology
- Gachon University
- Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology
- Graduate School of Convergence Science and Technology
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|