1
|
Szewczyk PK, Berniak K, Knapczyk-Korczak J, Karbowniczek JE, Marzec MM, Bernasik A, Stachewicz U. Mimicking natural electrical environment with cellulose acetate scaffolds enhances collagen formation of osteoblasts. NANOSCALE 2023; 15:6890-6900. [PMID: 36960764 DOI: 10.1039/d3nr00014a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The medical field is continuously seeking new solutions and materials, where cellulose materials due to their high biocompatibility have great potential. Here we investigate the applicability of cellulose acetate (CA) electrospun fibers for bone tissue regeneration. For the first time we show the piezoelectric properties of electrospun CA fibers via high voltage switching spectroscopy piezoresponse force microscopy (HVSS-PFM) tests, which are followed by surface potential studies using Kelvin probe force microscopy (KPFM) and zeta potential measurements. Piezoelectric coefficient for CA fibers of 6.68 ± 1.70 pmV-1 along with high surface (718 mV) and zeta (-12.2 mV) potentials allowed us to mimic natural electrical environment favoring bone cell attachment and growth. Importantly, the synergy between increased surface potential and highly developed structure of the fibrous scaffold led to the formation of a vast 3D network of collagen produced by osteoblasts only after 7 days of in vitro culture. We clearly show the advantages of CA scaffolds as a bone replacement material, when long-lasting structural support is needed.
Collapse
Affiliation(s)
- Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Krzysztof Berniak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Joanna Knapczyk-Korczak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Joanna E Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
2
|
Abstract
Ion beam irradiation of solid surfaces may result in the self-organized formation of well-defined topographic nanopatterns. Depending on the irradiation conditions and the material properties, isotropic or anisotropic patterns of differently shaped features may be obtained. Most intriguingly, the periodicities of these patterns can be adjusted in the range between less than twenty and several hundred nanometers, which covers the dimensions of many cellular and extracellular features. However, even though ion beam nanopatterning has been studied for several decades and is nowadays widely employed in the fabrication of functional surfaces, it has found its way into the biomaterials field only recently. This review provides a brief overview of the basics of ion beam nanopatterning, emphasizes aspects of particular relevance for biomaterials applications, and summarizes a number of recent studies that investigated the effects of such nanopatterned surfaces on the adsorption of biomolecules and the response of adhering cells. Finally, promising future directions and potential translational challenges are identified.
Collapse
|
3
|
Paun IA, Calin BS, Mustaciosu CC, Tanasa E, Moldovan A, Niemczyk A, Dinescu M. Laser Direct Writing via Two-Photon Polymerization of 3D Hierarchical Structures with Cells-Antiadhesive Properties. Int J Mol Sci 2021; 22:ijms22115653. [PMID: 34073424 PMCID: PMC8198338 DOI: 10.3390/ijms22115653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
We report the design and fabrication by laser direct writing via two photons polymerization of innovative hierarchical structures with cell-repellency capability. The structures were designed in the shape of “mushrooms”, consisting of an underside (mushroom’s leg) acting as a support structure and a top side (mushroom’s hat) decorated with micro- and nanostructures. A ripple-like pattern was created on top of the mushrooms, over length scales ranging from several µm (microstructured mushroom-like pillars, MMP) to tens of nm (nanostructured mushroom-like pillars, NMP). The MMP and NMP structures were hydrophobic, with contact angles of (127 ± 2)° and (128 ± 4)°, respectively, whereas flat polymer surfaces were hydrophilic, with a contact angle of (43 ± 1)°. The cell attachment on NMP structures was reduced by 55% as compared to the controls, whereas for the MMP, a reduction of only 21% was observed. Moreover, the MMP structures preserved the native spindle-like with phyllopodia cellular shape, whereas the cells from NMP structures showed a round shape and absence of phyllopodia. Overall, the NMP structures were more effective in impeding the cellular attachment and affected the cell shape to a greater extent than the MMP structures. The influence of the wettability on cell adhesion and shape was less important, the cellular behavior being mainly governed by structures’ topography.
Collapse
Affiliation(s)
- Irina A. Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania;
- Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
- Correspondence: ; Tel.: +40-770-612-912
| | - Bogdan S. Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania;
- Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| | - Cosmin C. Mustaciosu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, RO-077125 Magurele-Ilfov, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Eugenia Tanasa
- Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania; (A.M.); (M.D.)
| | - Antoniu Moldovan
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania; (A.M.); (M.D.)
| | - Agata Niemczyk
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 19 Piastow Ave, 70-310 Szczecin, Poland;
| | - Maria Dinescu
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania; (A.M.); (M.D.)
| |
Collapse
|
4
|
Garcia Diosa JA, Gonzalez Orive A, Weinberger C, Schwiderek S, Knust S, Tiemann M, Grundmeier G, Keller A, Camargo Amado RJ. TiO 2 nanoparticle coatings on glass surfaces for the selective trapping of leukemia cells from peripheral blood. J Biomed Mater Res B Appl Biomater 2021; 109:2142-2153. [PMID: 33982864 DOI: 10.1002/jbm.b.34862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/03/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) using TiO2 nanoparticles has become an important alternative treatment for different types of cancer due to their high photocatalytic activity and high absorption of UV-A light. To potentiate this treatment, we have coated commercial glass plates with TiO2 nanoparticles prepared by the sol-gel method (TiO2 -m), which exhibit a remarkable selectivity for the irreversible trapping of cancer cells. The physicochemical properties of the deposited TiO2 -m nanoparticle coatings have been characterized by a number of complementary surface-analytical techniques and their interaction with leukemia and healthy blood cells were investigated. Scanning electron and atomic force microscopy verify the formation of a compact layer of TiO2 -m nanoparticles. The particles are predominantly in the anatase phase and have hydroxyl-terminated surfaces as revealed by Raman, X-ray photoelectron, and infrared spectroscopy, as well as X-ray diffraction. We find that lymphoblastic leukemia cells adhere to the TiO2 -m coating and undergo amoeboid-like migration, whereas lymphocytic cells show distinctly weaker interactions with the coating. This evidences the potential of this nanomaterial coating to selectively trap cancer cells and renders it a promising candidate for the development of future prototypes of PDT devices for the treatment of leukemia and other types of cancers with non-adherent cells.
Collapse
Affiliation(s)
| | - Alejandro Gonzalez Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Tenerife, Spain
| | | | - Sabrina Schwiderek
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | - Steffen Knust
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | - Michael Tiemann
- Inorganic Chemistry, Paderborn University, Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | | |
Collapse
|
5
|
Hickey RJ, Pelling AE. Cellulose Biomaterials for Tissue Engineering. Front Bioeng Biotechnol 2019; 7:45. [PMID: 30968018 PMCID: PMC6438900 DOI: 10.3389/fbioe.2019.00045] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
In this review, we highlight the importance of nanostructure of cellulose-based biomaterials to allow cellular adhesion, the contribution of nanostructure to macroscale mechanical properties, and several key applications of these materials for fundamental scientific research and biomedical engineering. Different features on the nanoscale can have macroscale impacts on tissue function. Cellulose is a diverse material with tunable properties and is a promising platform for biomaterial development and tissue engineering. Cellulose-based biomaterials offer some important advantages over conventional synthetic materials. Here we provide an up-to-date summary of the status of the field of cellulose-based biomaterials in the context of bottom-up approaches for tissue engineering. We anticipate that cellulose-based material research will continue to expand because of the diversity and versatility of biochemical and biophysical characteristics highlighted in this review.
Collapse
Affiliation(s)
- Ryan J. Hickey
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, ON, Canada
| | - Andrew E. Pelling
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Institute for Science Society and Policy, University of Ottawa, Ottawa, ON, Canada
- SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Masciullo C, Dell'Anna R, Tonazzini I, Böettger R, Pepponi G, Cecchini M. Hierarchical thermoplastic rippled nanostructures regulate Schwann cell adhesion, morphology and spatial organization. NANOSCALE 2017; 9:14861-14874. [PMID: 28948996 DOI: 10.1039/c7nr02822a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.
Collapse
Affiliation(s)
- Cecilia Masciullo
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|