1
|
Brival R, Ghafari N, Mingotaud AF, Fourquaux I, Gilard V, Collin F, Vicendo P, Balayssac S, Gibot L. Encapsulation of photosensitizer worsen cell responses after photodynamic therapy protocol and polymer micelles act as biomodulators on their own. Int J Pharm 2024; 663:124589. [PMID: 39147251 DOI: 10.1016/j.ijpharm.2024.124589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Photodynamic therapy (PDT) is a photochemical therapeutic modality used clinically for dermatological, ophthalmological and oncological applications. Pheo a was used as a model photosensitizer, either in its free form or encapsulated within poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-PCL) polymer micelles. Block copolymer micelles are water-soluble biocompatible nanocontainers with great potential for delivering hydrophobic drugs. Empty PEO-PCL micelles were also tested throughout the experiments. The goal was to conduct an in vitro investigation into human colorectal tumor HCT-116 cellular responses induced by free and encapsulated Pheo a in terms of cell architecture, plasma membrane exchanges, mitochondrial function, and metabolic disturbances. In a calibrated PDT protocol, encapsulation enhanced Pheo a penetration (flow cytometry, confocal microscopy) and cell death (Prestoblue assay), causing massive changes to cell morphology (SEM) and cytoskeleton organization (confocal), mitochondrial dysfunction and loss of integrity (TEM), rapid and massive ion fluxes across the plasma membrane (ICP-OES, ion chromatography), and metabolic alterations, including increased levels of amino acids and choline derivatives (1H NMR). The detailed investigation provides insights into the multifaceted effects of encapsulated Pheo-PDT, emphasizing the importance of considering both the photosensitizer and its delivery system in understanding therapeutic outcomes. The study also raises questions as to the broader impact of empty nanovectors per se, and encourages a more comprehensive exploration of their biological effects.
Collapse
Affiliation(s)
- Rachel Brival
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Nathan Ghafari
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Véronique Gilard
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Fabrice Collin
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Stéphane Balayssac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
2
|
Heaugwane D, Cerlati O, Belkhir K, Tarek Benkhaled B, Catrouillet S, Fabing I, Claparols C, Vedrenne M, Goudounèche D, Payré B, Lucia Bona B, Tosi A, Baldelli Bombelli F, Vicendo P, Lapinte V, Lonetti B, Mingotaud AF, Gibot L. Coumarin-poly(2-oxazoline)s as synergetic and protein-undetected nanovectors for photodynamic therapy. Int J Pharm 2024; 658:124186. [PMID: 38701908 DOI: 10.1016/j.ijpharm.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.
Collapse
Affiliation(s)
- Diana Heaugwane
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Orélia Cerlati
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Isabelle Fabing
- Laboratoire SPCMIB, CNRS UMR5068, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse cedex 9, France
| | - Catherine Claparols
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Marc Vedrenne
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Beatrice Lucia Bona
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Alice Tosi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
3
|
Belkhir K, Cerlati O, Heaugwane D, Tosi A, Benkhaled BT, Brient PL, Chatard C, Graillot A, Catrouillet S, Balor S, Goudounèche D, Payré B, Laborie P, Lim JH, Putaux JL, Vicendo P, Gibot L, Lonetti B, Mingotaud AF, Lapinte V. Synthesis and Self-Assembly of UV-Cross-Linkable Amphiphilic Polyoxazoline Block Copolymers: Importance of Multitechnique Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16144-16155. [PMID: 36516233 DOI: 10.1021/acs.langmuir.2c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the nanomedicine field, there is a need to widen the availability of nanovectors to compensate for the increasingly reported side effects of poly(ethene glycol). Nanovectors enabling cross-linking can further optimize drug delivery. Cross-linkable polyoxazolines are therefore relevant candidates to address these two points. Here we present the synthesis of coumarin-functionalized poly(2-alkyl-2-oxazoline) block copolymers, namely, poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) and poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline). The hydrophilic ratio and molecular weights were varied in order to obtain a range of possible behaviors. Their self-assembly after nanoprecipitation or film rehydration was examined. The resulting nano-objects were fully characterized by transmission electron microscopy (TEM), cryo-TEM, multiple-angle dynamic and static light scattering. In most cases, the formation of polymer micelles was observed, as well as, in some cases, aggregates, which made characterization more difficult. Cross-linking was performed under UV illumination in the presence of a coumarin-bearing cross-linker based on polymethacrylate derivatives. Addition of the photo-cross-linker and cross-linking resulted in better-defined objects with improved stability in most cases.
Collapse
Affiliation(s)
- Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Orélia Cerlati
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Diana Heaugwane
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Alice Tosi
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | | | | | - Camille Chatard
- Specific Polymers, 150 Avenue des Cocardières, 34160Castries, France
| | - Alain Graillot
- Specific Polymers, 150 Avenue des Cocardières, 34160Castries, France
| | - Sylvain Catrouillet
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Stéphanie Balor
- METi Platform, Université Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex, France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062Toulouse cedex, France
| | - Pascale Laborie
- Technopolym, Institut de Chimie de Toulouse ICT-UAR 2599, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Jia-Hui Lim
- Université Grenoble Alpes, CNRS, CERMAV, F-38000Grenoble, France
| | - Jean-Luc Putaux
- Université Grenoble Alpes, CNRS, CERMAV, F-38000Grenoble, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, 34090Montpellier, France
| |
Collapse
|
4
|
Gouarderes S, Marches A, Vicendo P, Fourquaux I, Simon M, Merbahi N, Gibot L. Cold helium plasma jet does not stimulate collagen remodeling in a 3D human dermal substitute. Bioelectrochemistry 2022; 143:107985. [PMID: 34735915 DOI: 10.1016/j.bioelechem.2021.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
Cold Atmospheric Plasma (CAP) is an emerging physical approach displaying encouraging antitumor and wound healing effects both in vitro and in vivo. In this study, we assessed the potential of direct CAP to remodel skin collagens using an original tissue-engineered human dermal substitute model rich in endogenous extracellular matrix (ECM) covered with 600 µl of culture medium and treated with CAP for 30 and 120 s. Our results indicated that Reactive Oxygen and Nitrogen Species (RONS) such as H2O2, NO3- and NO2- were produced in the medium during treatment. It appeared that in the CAP-treated dermal substitutes 1) cell viability was not altered, 2) pro-collagen I secretion was not modified over 48 h of culture after treatment, 3) global activity of matrix metalloproteinases MMPs was not modulated over 48 h after treatment, and 4) no change in hydroxyproline content was observed over 5 days after treatment. In order to confirm the efficiency of our device, we showed that the plasma-activated culture medium induced cell apoptosis and growth delay using a 3D human tumor spheroid model. In conclusion, no effect of direct CAP treatment was monitored on dermal ECM production and degradation, indicating that CAP does not stimulate collagen remodeling at the tissue scale.
Collapse
Affiliation(s)
- Sara Gouarderes
- Laboratoire des IMRCP, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Aurélie Marches
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS, Inserm, Toulouse III - Paul Sabatier University, Toulouse, France; Laplace UMR CNRS 5213, Université Toulouse III - Paul Sabatier, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS, Inserm, Toulouse III - Paul Sabatier University, Toulouse, France
| | - Nofel Merbahi
- Laplace UMR CNRS 5213, Université Toulouse III - Paul Sabatier, France.
| | - Laure Gibot
- Laboratoire des IMRCP, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| |
Collapse
|
5
|
Plavchak CL, Smith WC, Bria CRM, Williams SKR. New Advances and Applications in Field-Flow Fractionation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:257-279. [PMID: 33770457 DOI: 10.1146/annurev-anchem-091520-052742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function.
Collapse
Affiliation(s)
- Christine L Plavchak
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | - William C Smith
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | | | - S Kim Ratanathanawongs Williams
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| |
Collapse
|
6
|
Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm 2020; 589:119882. [DOI: 10.1016/j.ijpharm.2020.119882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
7
|
Gibot L, Demazeau M, Pimienta V, Mingotaud AF, Vicendo P, Collin F, Martins-Froment N, Dejean S, Nottelet B, Roux C, Lonetti B. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020; 12:E384. [PMID: 32046147 PMCID: PMC7072360 DOI: 10.3390/cancers12020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
The use of nanocarriers for hydrophobic photosensitizers, in the context of photodynamic therapy (PDT) to improve pharmacokinetics and bio-distribution, is well-established. However, the mechanisms at play in the internalization of nanocarriers are not well-elucidated, despite its importance in nanocarrier design. In this study, we focus on the mechanisms involved in copolymer poly(ethylene oxide)-block-poly(-caprolactone) PEO-PCL and poly(ethylene oxide)-block-poly styrene PEO-PS micelles - membrane interactions through complementary physico-chemical studies on biomimetic membranes, and biological experiments on two-dimensional (2D) and three-dimensional (3D) cell cultures. Förster Resonance Energy Transfer measurements on fluorescently-labelled lipid vesicles, and flow cytometry on two cancerous cell lines enabled the evaluation in the uptake of a photosensitizer, Pheophorbide a (Pheo), and copolymer chains towards model membranes, and cells, respectively. The effects of calibrated light illumination for PDT treatment on lipid vesicle membranes, i.e., leakage and formation of oxidized lipids, and cell viability, were assessed. No significant differences were observed between the ability of PEO-PCL and PEO-PS micelles in delivering Pheo to model membranes, but Pheo was found in higher concentrations in cells in the case of PEO-PCL. These higher Pheo concentrations did not correspond to better performances in PDT treatment. We demonstrated that there are subtle differences in PEO-PCL and PEO-PS micelles for the delivery of Pheo.
Collapse
Affiliation(s)
- Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Nathalie Martins-Froment
- Service Commun de Spectrométrie de Masse (FR2599), Université de Toulouse III (Paul Sabatier), 118, route de Narbonne, F-31062 Toulouse Cedex 9, France;
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| |
Collapse
|
8
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
9
|
Gibot L, Kolosnjaj-Tabi J, Bellard E, Chretiennot T, Saurin Q, Catrain A, Golzio M, Vézinet R, Rols MP. Evaluations of Acute and Sub-Acute Biological Effects of Narrowband and Moderate-Band High Power Electromagnetic Waves on Cellular Spheroids. Sci Rep 2019; 9:15324. [PMID: 31653929 PMCID: PMC6814744 DOI: 10.1038/s41598-019-51686-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
High power electromagnetic signals can disrupt the functioning of electronic devices. As electromagnetism plays a role in cells homeostasis, such electromagnetic signals could potentially also alter some physiological processes. Herein we report on distinct biological parameters assessment after cellular spheroids exposure to high power electromagnetic signals, such as the ones used for defense applications. Signals effects were assessed in tumor cells spheroids and in normal human dermal fibroblasts spheroids, where macroscopic aspect, growth, plasma membrane integrity, induction of apoptosis, ATP content, and mitochondrial potential were investigated after spheroids exposure to high power electromagnetic signals. No significant effects were observed, indicating that 1.5 GHz narrowband electromagnetic fields with incident amplitude level of 40 kV/m, and 150 MHz moderate-band electric fields with an amplitude of 72.5 to approximately 200 kV/m, do not cause any significant alterations of assessed parameters.
Collapse
Affiliation(s)
- Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | | | | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
10
|
Gumz H, Boye S, Iyisan B, Krönert V, Formanek P, Voit B, Lederer A, Appelhans D. Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801299. [PMID: 30989019 PMCID: PMC6446602 DOI: 10.1002/advs.201801299] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Indexed: 05/19/2023]
Abstract
Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin-gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase-with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
Collapse
Affiliation(s)
- Hannes Gumz
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Susanne Boye
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Banu Iyisan
- Max‐Planck‐Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Vera Krönert
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Petr Formanek
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Albena Lederer
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| |
Collapse
|
11
|
Caputo F, Arnould A, Bacia M, Ling WL, Rustique E, Texier I, Mello AP, Couffin AC. Measuring Particle Size Distribution by Asymmetric Flow Field Flow Fractionation: A Powerful Method for the Preclinical Characterization of Lipid-Based Nanoparticles. Mol Pharm 2019; 16:756-767. [PMID: 30604620 PMCID: PMC6377179 DOI: 10.1021/acs.molpharmaceut.8b01033] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Particle size distribution and stability are key attributes for the evaluation of the safety and efficacy profile of medical nanoparticles (Med-NPs). Measuring particle average size and particle size distribution is a challenging task which requires the combination of orthogonal high-resolution sizing techniques, especially in complex biological media. Unfortunately, despite its limitations, due to its accessibility, low cost, and easy handling, batch mode dynamic light scattering (DLS) is still very often used as the only approach to measure particle size distribution in the nanomedicine field. In this work the use of asymmetric flow field flow fractionation coupled to multiangle light scattering and dynamic light scattering detectors (AF4-MALS-DLS) was evaluated as an alternative to batch mode DLS to measure the physical properties of lipid-based nanoparticles. A robust standard operating procedure (SOPs) developed by the Nanomedicine Characterization Laboratory (EUNCL) was presented and tested to assess size stability, batch to batch consistency, and the behavior of the lipid-based nanoparticles in plasma. Orthogonal sizing techniques, such as transmission electron microscopy (TEM) and particle tracking analysis (PTA) measurements, were performed to support the results. While batch mode DLS could be applied as a fast and simple method to provide a preliminary insight into the integrity and polydispersity of samples, it was unsuitable to resolve small modifications of the particle size distribution. The introduction of nanoparticle sorting by field-flow fractionation coupled to online DLS and MALS allowed assessment of batch to batch variability and changes in the size of the lipid nanoparticles induced by the interaction with serum proteins, which are critical for quality control and regulatory aspects. In conclusion, if a robust SOP is followed, AF4-MALS-DLS is a powerful method for the preclinical characterization of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Fanny Caputo
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | | | - Maria Bacia
- Univ. Grenoble Alpes, CEA , CNRS, IBS , F-38000 Grenoble , France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA , CNRS, IBS , F-38000 Grenoble , France
| | - Emilie Rustique
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | - Isabelle Texier
- Univ. Grenoble Alpes, CEA , LETI , F-38000 Grenoble , France
| | - Adriele Prina Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine , Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin , Dublin 8 , Ireland.,AMBER Centre and CRANN Institute, Trinity College Dublin , Dublin 2 , Ireland
| | | |
Collapse
|
12
|
Oudin A, Chauvin J, Gibot L, Rols MP, Balor S, Goudounèche D, Payré B, Lonetti B, Vicendo P, Mingotaud AF, Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J Mater Chem B 2019; 7:4973-4982. [DOI: 10.1039/c9tb00118b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coumarin crosslinked polyoxazoline-based vectors developed for efficient photodynamic therapy.
Collapse
|
13
|
Figarol A, Gibot L, Golzio M, Lonetti B, Mingotaud AF, Rols MP. A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv 2018; 25:1766-1778. [PMID: 30311803 PMCID: PMC6197035 DOI: 10.1080/10717544.2018.1510064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Polymeric nanocarriers must overcome several biological barriers to reach the vicinity of solid tumors and deliver their encapsulated drug. This study assessed the in vitro and in vivo passage through the blood vessel wall to tumors of two well-characterized polymeric nanocarriers: poly(ethyleneglycol-b-ε-caprolactone) micelles and polymersomes charged with a fluorescent membrane dye (DiO: 3,3'-dioctadecyloxacarbo-cyanine perchlorate). The internalization and translocation from endothelial (human primary endothelial cells HUVEC) to cancer cells (human tumor cell line HCT-116) was studied in conventional 2D monolayers, 3D tumor spheroids, or in an endothelium model based on transwell assay. Micelles induced a faster DiO internalization compared to polymersomes but the latter crossed the endothelial monolayer more easily. Both translocation rates were enhanced by the addition of a pro-inflammatory factor or in the presence of tumor cells. These results were confirmed by early in vivo experiments. Overall, this study pointed out the room for the improvement of polymeric nanocarriers design to avoid drug losses when crossing the blood vessel walls.
Collapse
Affiliation(s)
- Agathe Figarol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Laboratoire des IMRCP, Université de Toulouse CNRS UMR, Toulouse, France
| | - Laure Gibot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse CNRS UMR, Toulouse, France
| | | | - Marie-Pierre Rols
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
14
|
Gineste S, Di Cola E, Amouroux B, Till U, Marty JD, Mingotaud AF, Mingotaud C, Violleau F, Berti D, Parigi G, Luchinat C, Balor S, Sztucki M, Lonetti B. Mechanistic Insights into Polyion Complex Associations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stéphane Gineste
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Emanuela Di Cola
- BioSoftMatter
Laboratorio Dip CBBM LITA, Universita di Milano, Via F lli Cervi
93 MI IT, 20090 Segrate, Italy
| | - Baptiste Amouroux
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Ugo Till
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
- Département
Sciences Agronomiques et Agroalimentaires, Université de Toulouse, Institut National Polytechnique de Toulouse - Ecole d’Ingénieurs de Purpan, 75 voie du TOEC, BP 57611, Cedex 03 F-31076 Toulouse, France
| | - Jean-Daniel Marty
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Christophe Mingotaud
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Frédéric Violleau
- Laboratoire
de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-EI PURPAN, Toulouse, France
| | - Debora Berti
- Department
of Chemistry “Ugo Schiff”, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Giacomo Parigi
- Department
of Chemistry Ugo Schiff and Magnetic Resonance Center (CERM), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Claudio Luchinat
- Department
of Chemistry Ugo Schiff and Magnetic Resonance Center (CERM), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Stéphanie Balor
- Plateforme
METi, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Sztucki
- European Synchrotron
Radiation Facility-71, avenue des Martyrs,
CS 40220, Cedex 9 38043 Grenoble, France
| | - Barbara Lonetti
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| |
Collapse
|
15
|
Ibrahimova V, Denisov SA, Vanvarenberg K, Verwilst P, Préat V, Guigner JM, McClenaghan ND, Lecommandoux S, Fustin CA. Photosensitizer localization in amphiphilic block copolymers controls photodynamic therapy efficacy. NANOSCALE 2017; 9:11180-11186. [PMID: 28749509 DOI: 10.1039/c7nr04403h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Localization of the photosensitizer conjugation site in amphiphilic block copolymers is shown to have a great impact on photodynamic therapy efficiency. To this end, an asymmetric multifunctional derivative of the azadipyrromethene boron difluoride chelate (aza-BODIPY) was synthesized and inserted at specific locations in polypeptide-based rod-coil amphiphilic block copolymers. A study of the photophysical properties of the vesicle nanocarriers, obtained by self-assembly of these copolymers, as well as in vitro tests on two cancer cell lines were performed. This study aims at providing guidelines for the optimization of the synthetic design of therapeutic nanomedicines with minimal amounts of photosensitive molecules.
Collapse
Affiliation(s)
- Vusala Ibrahimova
- Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter division (BSMA), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yi X, Zhao D, Zhang Q, Xu J, Yuan G, Zhuo R, Li F. Preparation of multilocation reduction-sensitive core crosslinked folate-PEG-coated micelles for rapid release of doxorubicin and tariquidar to overcome drug resistance. NANOTECHNOLOGY 2017; 28:085603. [PMID: 28055982 DOI: 10.1088/1361-6528/aa5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we prepared folate-targeting core crosslinked polymeric micelles (CCL/FA) containing multiple disulfide bonds located at the interface and core of the micelles to co-deliver doxorubicin (DOX) and the P-glycoprotein (P-gp) inhibitor tariquidar (TQR) for reversing drug resistance. The stability and redox-responsive behavior of the CCL/FA micelles was evaluated through the changes in morphology, molecular weight and hydrodynamic size. On the one hand, the micelles possessed good stability, which led to the suppression of drug release from the CCL micelles in the physiological environment. On the other hand, under reductive conditions, the CCL micelles collapsed rapidly and accelerated drug release markedly. In vitro cytotoxicity measurements, combined with confocal laser scanning microscopy (CLSM) and flow cytometry, confirmed that the dual-drug-loaded micelles exhibited obviously higher cytotoxicity to MCF-7/ADR-resistant cells than free DOX · HCl, single-drug loaded CCL micelles and nontargeted CCL micelles. The results imply that co-delivering DOX and TQR by CCL/FA micelles may be a promising way of overcoming multidrug resistance in tumor treatments.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|