1
|
Collins L, Vasudevan RK, Sehirlioglu A. Visualizing Charge Transport and Nanoscale Electrochemistry by Hyperspectral Kelvin Probe Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33361-33369. [PMID: 32579328 DOI: 10.1021/acsami.0c06426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Charge-transport and electrochemical processes are heavily influenced by the local microstructure. Kelvin probe force microscopy (KPFM) is a widely used technique to map electrochemical potentials at the nanometer scale; however, it offers little information on local charge dynamics. Here, we implement a hyperspectral KPFM approach for spatially mapping bias-dependent charge dynamics in timescales ranging from the sub-millisecond to the second regime. As a proof of principle, we investigate the role mobile surface charges play in a three-unit-cell LaAlO3/SrTiO3 oxide heterostructure. We explore machine learning approaches to assist with visualization, pattern recognition, and interpretation of the information-rich data sets. Linear unmixing methods reveal hidden bias-dependent interfacial processes, most likely water splitting, which are essentially unnoticed by functional fitting of the dynamic response alone. Hyperspectral KPFM will be beneficial for investigating nanoscale charge transport and local reactivity in systems involving a possible combination of electronic, ionic, and electrochemical phenomena.
Collapse
Affiliation(s)
- Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Alp Sehirlioglu
- Department of Materials Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Kalinin SV, Dyck O, Balke N, Neumayer S, Tsai WY, Vasudevan R, Lingerfelt D, Ahmadi M, Ziatdinov M, McDowell MT, Strelcov E. Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS NANO 2019; 13:9735-9780. [PMID: 31433942 DOI: 10.1021/acsnano.9b02687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical reactions and ionic transport underpin the operation of a broad range of devices and applications, from energy storage and conversion to information technologies, as well as biochemical processes, artificial muscles, and soft actuators. Understanding the mechanisms governing function of these applications requires probing local electrochemical phenomena on the relevant time and length scales. Here, we discuss the challenges and opportunities for extending electrochemical characterization probes to the nanometer and ultimately atomic scales, including challenges in down-scaling classical methods, the emergence of novel probes enabled by nanotechnology and based on emergent physics and chemistry of nanoscale systems, and the integration of local data into macroscopic models. Scanning probe microscopy (SPM) methods based on strain detection, potential detection, and hysteretic current measurements are discussed. We further compare SPM to electron beam probes and discuss the applicability of electron beam methods to probe local electrochemical behavior on the mesoscopic and atomic levels. Similar to a SPM tip, the electron beam can be used both for observing behavior and as an active electrode to induce reactions. We briefly discuss new challenges and opportunities for conducting fundamental scientific studies, matter patterning, and atomic manipulation arising in this context.
Collapse
Affiliation(s)
- Sergei V Kalinin
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Ondrej Dyck
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Nina Balke
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Sabine Neumayer
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Wan-Yu Tsai
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Rama Vasudevan
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - David Lingerfelt
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Mahshid Ahmadi
- Joint Institute for Advanced Materials, Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Matthew T McDowell
- George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Evgheni Strelcov
- Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
3
|
Ding J, Strelcov E, Bassiri-Gharb N. Effects of Microstructure on Electrochemical Reactivity and Conductivity in Nanostructured Ceria Thin Films. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. AMERICAN CERAMIC SOCIETY 2018; 101:10.1111/jace.15183. [PMID: 38505649 PMCID: PMC10949040 DOI: 10.1111/jace.15183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The proton conductivity in functional oxides is crucial in determining electrochemistry and transport phenomena in a number of applications such as catalytic devices and fuel cells. However, single characterization techniques are usually limited in detecting the ionic dynamics at the full range of environmental conditions. In this report, we probe and uncover the links between the microstructure of nanostructured ceria (NC) and parameters that govern its electrochemical reaction and proton transport, by coupling experimental data obtained with time-resolved Kelvin probe force microscopy (tr-KPFM), electrochemical impedance spectroscopy (EIS), and finite element analysis. It is found that surface morphology determines the water splitting rate and proton conductivity at 25 °C and wet conditions, where protons are mainly generated and transported within surface physisorbed water layers. However, at higher temperature (i.e., ≥125 °C) and dry conditions, when physisorbed water evaporates, grain size and crystallographic orientation become significant factors. Specifically, the proton generation rate is negatively correlated with the grain size, whereas proton diffusivity is facilitated by surface {111} planes and additional conduction pathways offered by cracks and open pores connected to the surface.
Collapse
Affiliation(s)
- Jilai Ding
- Department of Materials Science and Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, United States
| | - Evgheni Strelcov
- Center for Nanoscale Science and Technology, National Institute of
Standards and Technology, Gaithersburg, MD 20899, United States
- Maryland NanoCenter, University of Maryland, College Park, MD 20742,
United States
| | - Nazanin Bassiri-Gharb
- Department of Materials Science and Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, United States
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
4
|
Strelcov E, Ahmadi M, Kalinin SV. Nanoscale Transport Imaging of Active Lateral Devices: Static and Frequency Dependent Modes. KELVIN PROBE FORCE MICROSCOPY 2018. [DOI: 10.1007/978-3-319-75687-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|