1
|
Lai LL, Huang PH, Stemme G, Niklaus F, Gylfason KB. 3D Printing of Glass Micro-Optics with Subwavelength Features on Optical Fiber Tips. ACS NANO 2024; 18:10788-10797. [PMID: 38551815 PMCID: PMC11044591 DOI: 10.1021/acsnano.3c11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/24/2024]
Abstract
Integration of functional materials and structures on the tips of optical fibers has enabled various applications in micro-optics, such as sensing, imaging, and optical trapping. Direct laser writing is a 3D printing technology that holds promise for fabricating advanced micro-optical structures on fiber tips. To date, material selection has been limited to organic polymer-based photoresists because existing methods for 3D direct laser writing of inorganic materials involve high-temperature processing that is not compatible with optical fibers. However, organic polymers do not feature stability and transparency comparable to those of inorganic glasses. Herein, we demonstrate 3D direct laser writing of inorganic glass with a subwavelength resolution on optical fiber tips. We show two distinct printing modes that enable the printing of solid silica glass structures ("Uniform Mode") and self-organized subwavelength gratings ("Nanograting Mode"), respectively. We illustrate the utility of our approach by printing two functional devices: (1) a refractive index sensor that can measure the indices of binary mixtures of acetone and methanol at near-infrared wavelengths and (2) a compact polarization beam splitter for polarization control and beam steering in an all-in-fiber system. By combining the superior material properties of glass with the plug-and-play nature of optical fibers, this approach enables promising applications in fields such as fiber sensing, optical microelectromechanical systems (MEMS), and quantum photonics.
Collapse
Affiliation(s)
- Lee-Lun Lai
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Po-Han Huang
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Göran Stemme
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Frank Niklaus
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Kristinn B. Gylfason
- Division
of Micro and Nanosystems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| |
Collapse
|
2
|
Pala P, Komorowska K, Szpecht A, Martynkien T. Grism fabricated on the end-face of an optical fiber. OPTICS EXPRESS 2023; 31:23362-23371. [PMID: 37475421 DOI: 10.1364/oe.491386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023]
Abstract
We designed and fabricated grism structures on the end-face of an optical fiber and experimentally characterized them. A UV-curable ionic-liquid polymer resin, well-suited for nanoimprinting, was used to fabricate the grism structures with grating pitches of 1.8-3 µm and prism apex angle reaching 30-40°. The structures can propagate 1st order of diffraction peaks along the fiber axis at 520, 660, and 830 nm wavelengths. The experimental and numerically simulated results of far-field intensity distribution revealed high agreement. Hence, based on the numerical simulation, we proposed grism structure designs for in-line propagation of first-order diffraction at wavelengths of λ = 1300 - 2000 nm utilizing chalcogenide glass fibers.
Collapse
|
3
|
Hu J, Song E, Liu Y, Yang Q, Sun J, Chen J, Meng Y, Jia Y, Yu Z, Ran Y, Shao L, Shum PP. Fiber Laser-Based Lasso-Shaped Biosensor for High Precision Detection of Cancer Biomarker-CEACAM5 in Serum. BIOSENSORS 2023; 13:674. [PMID: 37504073 PMCID: PMC10377356 DOI: 10.3390/bios13070674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance. In addition, the sophistication of sensor preparation hinders the reproduction and scale-up fabrication. To address these issues, in this study, a straightforward lasso-shaped fiber laser biosensor was proposed for the specific determination of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) protein in serum. Due to the ultra-narrow linewidth of the laser, a very small variation of lasing signal caused by biomolecular bonding can be clearly distinguished via high-resolution spectral analysis. The limit of detection (LOD) of the proposed biosensor could reach 9.6 ng/mL according to the buffer test. The sensing capability was further validated by a human serum-based cancer diagnosis trial, enabling great potential for clinical use. The high reproduction of fabrication allowed the mass production of the sensor and extended its utility to a broader biosensing field.
Collapse
Affiliation(s)
- Jie Hu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Enlai Song
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yuhui Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiaochu Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Junhui Sun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinna Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 511436, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, Faculty of Science and Technology-ECE, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Zhiguang Yu
- Medcaptain Medical Technology Co., Ltd., Shenzhen 518055, China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Liyang Shao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Du B, Xu Y, Zhang L, Zhang Y. Plasmonic Functionality of Optical Fiber Tips: Mechanisms, Fabrications, and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093596. [PMID: 37176478 PMCID: PMC10180505 DOI: 10.3390/ma16093596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Optical fiber tips with the flat end-facets functionalized take the special advantages of easy fabrication, compactness, and ready-integration among the community of optical fiber devices. Combined with plasmonic structures, the fiber tips draw a significant growth of interest addressing diverse functions. This review aims to present and summarize the plasmonic functionality of optical fiber tips with the current state of the art. Firstly, the mechanisms of plasmonic phenomena are introduced in order to illustrate the tip-compatible plasmonic nanostructures. Then, the strategies of plasmonic functionalities on fiber tips are analyzed and compared. Moreover, the classical applications of plasmonic fiber tips are reviewed. Finally, the challenges and prospects for future opportunities are discussed.
Collapse
Affiliation(s)
- Bobo Du
- Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunfan Xu
- Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanpeng Zhang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Zhou J, Gashi A, Riminucci F, Chang B, Barnard E, Cabrini S, Weber-Bargioni A, Schwartzberg A, Munechika K. Sharp, high numerical aperture (NA), nanoimprinted bare pyramid probe for optical mapping. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033902. [PMID: 37012819 DOI: 10.1063/5.0104012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique. The nanoimprinted pyramid has two main features: (1) a large taper angle (∼70°), which determines the far-field confinement at the tip, resulting in a spatial resolution of 275 nm, an effective numerical aperture of 1.06, and (2) a sharp apex with a radius of curvature of ∼20 nm, which enables high resolution topographic imaging. Optical performance is demonstrated through evanescent field distribution mapping of a plasmonic nanogroove sample, followed by hyperspectral photoluminescence mapping of nanocrystals using a fiber-in-fiber-out light coupling mode. Through comparative photoluminescence mapping on 2D monolayers, we also show a threefold improvement in spatial resolution over chemically etched fibers. These results show that the bare nanoimprinted near-field probes provide simple access to spectromicroscopy correlated with high resolution topographic mapping and have the potential to advance reproducible fiber-tip-based scanning near-field microscopy.
Collapse
Affiliation(s)
- Junze Zhou
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Arian Gashi
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Fabrizio Riminucci
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Boyce Chang
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Edward Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Stefano Cabrini
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Alexander Weber-Bargioni
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Keiko Munechika
- HighRI Optics, Inc., 5401 Broadway Ter 304, Oakland, California 94618, USA
| |
Collapse
|
6
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
7
|
Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X, Ni X. Optical meta-waveguides for integrated photonics and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:235. [PMID: 34811345 PMCID: PMC8608813 DOI: 10.1038/s41377-021-00655-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The growing maturity of nanofabrication has ushered massive sophisticated optical structures available on a photonic chip. The integration of subwavelength-structured metasurfaces and metamaterials on the canonical building block of optical waveguides is gradually reshaping the landscape of photonic integrated circuits, giving rise to numerous meta-waveguides with unprecedented strength in controlling guided electromagnetic waves. Here, we review recent advances in meta-structured waveguides that synergize various functional subwavelength photonic architectures with diverse waveguide platforms, such as dielectric or plasmonic waveguides and optical fibers. Foundational results and representative applications are comprehensively summarized. Brief physical models with explicit design tutorials, either physical intuition-based design methods or computer algorithms-based inverse designs, are cataloged as well. We highlight how meta-optics can infuse new degrees of freedom to waveguide-based devices and systems, by enhancing light-matter interaction strength to drastically boost device performance, or offering a versatile designer media for manipulating light in nanoscale to enable novel functionalities. We further discuss current challenges and outline emerging opportunities of this vibrant field for various applications in photonic integrated circuits, biomedical sensing, artificial intelligence and beyond.
Collapse
Affiliation(s)
- Yuan Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yizhen Chen
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China
| | - Longhui Lu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yimin Ding
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Cusano
- Optoelectronic Division, Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Jonathan A Fan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiaomu Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaiyuan Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenwei Xie
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Zhoutian Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China.
| | - Shulin Sun
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China.
| | - Minming Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Xingjie Ni
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Mironov AE, Kim J, Huang Y, Steinforth AW, Sievers DJ, Eden JG. Photolithography in the vacuum ultraviolet (172 nm) with sub-400 nm resolution: photoablative patterning of nanostructures and optical components in bulk polymers and thin films on semiconductors. NANOSCALE 2020; 12:16796-16804. [PMID: 32766620 DOI: 10.1039/d0nr04142d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precision photoablation of bulk polymers or films with incoherent vacuum ultraviolet (VUV) radiation from flat, microplasma array-powered lamps has led to the realization of a photolithographic process in which an acrylic, polycarbonate, or other polymer serves as a dry photoresist. Patterning of the surface of commercial-grade, bulk polymers (or films spun onto Si substrates) such as poly-methyl methacrylate (PMMA) and acrylonitrile butadiene styrene (ABS) with 172 nm lamp intensities as low as ∼10 mW cm-2 and a fused silica contact mask yields trenches, as well as arbitrarily-complex 3D structures, with depths reproducible to ∼10 nm. For 172 nm intensities of 10 mW cm-2 at the substrate, linearized PMMA photoablation rates of ∼4 nm s-1 are measured for exposure times t≤ 70 s but a gradual decline is observed thereafter. Beyond t∼ 300 s, the polymer removal rate gradually saturates at ∼0.2 nm s-1. Intricate patterns are readily produced in bulk acrylics or 40-200 nm thick acrylic films on Si with two or more exposures and overall process times of typically 10-300 s. The photoablation process is sufficiently precise that the smallest lateral feature size fabricated reproducibly to date, ∼350 nm, appears to be limited primarily by the photomask itself. Examples of the versatility and precision of this photolithographic process include the fabrication of arrays of aluminum nanomirrors, each atop a 350 nm or 1 μm-diameter Si post, as well as optical components such as transmission gratings or Fresnel lenses photoablated into PMMA.
Collapse
Affiliation(s)
- Andrey E Mironov
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois, Urbana, IL 61801, USA. and N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA and Cygnus Photonics, 4404 Ironwood Lane, Champaign, IL 61822, USA
| | - Jinhong Kim
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois, Urbana, IL 61801, USA. and N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Yin Huang
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois, Urbana, IL 61801, USA. and N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Austin W Steinforth
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois, Urbana, IL 61801, USA. and N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Dane J Sievers
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois, Urbana, IL 61801, USA. and N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA and Cygnus Photonics, 4404 Ironwood Lane, Champaign, IL 61822, USA
| | - J Gary Eden
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois, Urbana, IL 61801, USA. and N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA and Cygnus Photonics, 4404 Ironwood Lane, Champaign, IL 61822, USA
| |
Collapse
|
9
|
Xu J, Li K, Zhang S, Lu X, Shi N, Tan Z, Lu Y, Liu N, Zhang B, Liang Z. Field-enhanced nanofocusing of radially polarized light by a tapered hybrid plasmonic waveguide with periodic grooves. APPLIED OPTICS 2019; 58:588-592. [PMID: 30694249 DOI: 10.1364/ao.58.000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
This study reports the field-enhanced nanofocusing of radially polarized light by tapered hybrid plasmonic waveguide (THPW) with periodic grooves. The THPW consists of a conical high-index dielectric cone, a sandwiched low-index dielectric thin layer, and a metal cladding. The axially symmetric 3D finite element method is used to investigate the nanofocusing effect. Under radially polarized illumination at 632.8 nm, strongly enhanced nanofocusing occurs. The hybrid plasmonic structure effectively reduces the energy loss and improves the field enhancement nearly 554 times. Furthermore, periodic grooves are constructed on the metallic surface of the THPW, satisfying the phase-matching condition, and they couple the light energy from the inside to the outside. Finally, an optimized nanofocusing performance with field enhancement of approximately 1810 times is obtained. The results offer an important reference for designing related photonic devices, and the proposed scheme could be potentially exploited in the application of light-matter interactions.
Collapse
|
10
|
van Assenbergh P, Meinders E, Geraedts J, Dodou D. Nanostructure and Microstructure Fabrication: From Desired Properties to Suitable Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703401. [PMID: 29573546 DOI: 10.1002/smll.201703401] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/30/2017] [Indexed: 05/25/2023]
Abstract
When designing a new nanostructure or microstructure, one can follow a processing-based manufacturing pathway, in which the structure properties are defined based on the processing capabilities of the fabrication method at hand. Alternatively, a performance-based pathway can be followed, where the envisioned performance is first defined, and then suitable fabrication methods are sought. To support the latter pathway, fabrication methods are here reviewed based on the geometric and material complexity, resolution, total size, geometric and material diversity, and throughput they can achieve, independently from processing capabilities. Ten groups of fabrication methods are identified and compared in terms of these seven moderators. The highest resolution is obtained with electron beam lithography, with feature sizes below 5 nm. The highest geometric complexity is attained with vat photopolymerization. For high throughput, parallel methods, such as photolithography (≈101 m2 h-1 ), are needed. This review offers a decision-making tool for identifying which method to use for fabricating a structure with predefined properties.
Collapse
Affiliation(s)
- Peter van Assenbergh
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, CD, Delft, The Netherlands
| | - Erwin Meinders
- AMSYSTEMS Center, De Lismortel 31, 5612, AR, Eindhoven, The Netherlands
| | - Jo Geraedts
- Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628, CE, Delft, The Netherlands
| | - Dimitra Dodou
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, CD, Delft, The Netherlands
| |
Collapse
|
11
|
Koshelev A, Munechika K, Cabrini S. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot. OPTICS LETTERS 2017; 42:4339-4342. [PMID: 29088158 DOI: 10.1364/ol.42.004339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.
Collapse
|
12
|
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber. Sci Rep 2017; 7:1651. [PMID: 28490793 PMCID: PMC5431761 DOI: 10.1038/s41598-017-01871-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Abstract
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the ‘campanile’ near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub <100 nm position accuracy, followed by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.
Collapse
|