1
|
Demontis V, Zannier V, Sorba L, Rossella F. Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2079. [PMID: 34443910 PMCID: PMC8398085 DOI: 10.3390/nano11082079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022]
Abstract
Ordered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials.
Collapse
Affiliation(s)
- Valeria Demontis
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Valentina Zannier
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Lucia Sorba
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Francesco Rossella
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
2
|
Barrigón E, Heurlin M, Bi Z, Monemar B, Samuelson L. Synthesis and Applications of III-V Nanowires. Chem Rev 2019; 119:9170-9220. [PMID: 31385696 DOI: 10.1021/acs.chemrev.9b00075] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.
Collapse
Affiliation(s)
- Enrique Barrigón
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Magnus Heurlin
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden.,Sol Voltaics AB , Scheelevägen 63 , 223 63 Lund , Sweden
| | - Zhaoxia Bi
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Bo Monemar
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Lars Samuelson
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| |
Collapse
|
3
|
Micolich A, Li M, Caroff P. Editorial-Focus on inorganic semiconductor nanowires for device applications. NANOTECHNOLOGY 2018; 29:030201. [PMID: 29243664 DOI: 10.1088/1361-6528/aa9b8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Adam Micolich
- School of Physics, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
4
|
Koelling S, Li A, Cavalli A, Assali S, Car D, Gazibegovic S, Bakkers EPAM, Koenraad PM. Atom-by-Atom Analysis of Semiconductor Nanowires with Parts Per Million Sensitivity. NANO LETTERS 2017; 17:599-605. [PMID: 28002677 DOI: 10.1021/acs.nanolett.6b03109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The functionality of semiconductor devices is determined by the incorporation of dopants at concentrations down to the parts per million (ppm) level and below. Optimization of intentional and unintentional impurity doping relies on methods to detect and map the level of impurities. Detecting such low concentrations of impurities in nanostructures is however challenging to date as on the one hand methods used for macroscopic samples cannot be applied due to the inherent small volumes or faceted surfaces and on the other hand conventional microscopic analysis techniques are not sufficiently sensitive. Here, we show that we can detect and map impurities at the ppm level in semiconductor nanowires using atom probe tomography. We develop a method applicable to a wide variety of nanowires relevant for electronic and optical devices. We expect that it will contribute significantly to the further optimization of the synthesis of nanowires, nanostructures and devices based on these structures.
Collapse
Affiliation(s)
- S Koelling
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
| | - A Li
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
- Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology , Beijing, 100024, China
| | - A Cavalli
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
| | - S Assali
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
| | - D Car
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
- Quantum Transport Group, Kavli Institute , Delft, 2628 CJ, The Netherlands
| | - S Gazibegovic
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
- Quantum Transport Group, Kavli Institute , Delft, 2628 CJ, The Netherlands
| | - E P A M Bakkers
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
- Quantum Transport Group, Kavli Institute , Delft, 2628 CJ, The Netherlands
| | - P M Koenraad
- Photonics and Semiconductor Nanophysics, Eindhoven University of Technology , Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|