1
|
Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015; 140:2573-91. [DOI: 10.1039/c4an02049a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origins of SIFT created to study interstellar chemistry and SIFT-MS developed for ambient gas and exhaled breath analysis and the UK centres in which these techniques are being exploited.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
| | - Patrik Španěl
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
- J. Heyrovský Institute of Physical Chemistry
| |
Collapse
|
2
|
Winkler K, Herbig J, Kohl I. Real-time metabolic monitoring with proton transfer reaction mass spectrometry. J Breath Res 2013; 7:036006. [DOI: 10.1088/1752-7155/7/3/036006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Spanel P, Smith D. On the features, successes and challenges of selected ion flow tube mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:225-246. [PMID: 24575622 DOI: 10.1255/ejms.1240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The major features of the selected ion flow tube mass spectrometry (SIFT-MS) analytical method that was conceived and designed for the analysis, in real time, of air obviating sample collections into bags or extraction by pre-concentration of trace compounds onto surfaces are reviewed. The unique analytical capabilities of SIFT-MS for ambient analysis are stressed that allow quantification of volatile organic and inorganic compounds directly from the measurement of physical parameters without the need for regular instrumental calibration using internal or external standards. Then, emphasis is placed on the challenging real-time accurate analysis of single exhalations of humid breath, which is now achieved and readily facilitates wider applications of SIFT-MS in other fields where trace gas analysis has value. The quality of the data obtained by SIFT-MS is illustrated by the quantification of some exhaled breath metabolites that are of immediate relevance to physiology and medicine, including that of hydrogen cyanide in the breath of patients with cystic fibrosis. The current status of SIFT-MS is revealed by a form of a strengths, weakness, opportunities and threats (SWOT) analysis intended to present an objective view of this analytical technique and the likely way forward towards its further development and application.
Collapse
Affiliation(s)
- Patrik Spanel
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, DolejSkova 3, 182 23, Prague 8, Czech Republic
| | - David Smith
- lnstitute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| |
Collapse
|
4
|
Changes in total body water content during running races of 21.1 km and 56 km in athletes drinking ad libitum. Clin J Sport Med 2011; 21:218-25. [PMID: 21427566 DOI: 10.1097/jsm.0b013e31820eb8d7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To measure changes in body mass (BM), total body water (TBW), fluid intake, and blood biochemistry in athletes during 21.1-km and 56-km foot races. DESIGN Observational study. SETTING 2009 Two Oceans Marathon, South Africa. PARTICIPANTS Twenty-one (21.1 km) and 12 (56 km) participants were advised to drink according to thirst or their own race drink plan (ad libitum). MAIN OUTCOME MEASURES Body mass, TBW, plasma osmolality, plasma sodium (p[Na]), and plasma total protein ([TP]) concentrations were measured before and after race. Fluid intake was recorded from recall after race. RESULTS Significant BM loss occurred in both races (21.1 km; -1.4 ± 0.6 kg; P < 0.000 and 56 km; -2.5 ± 1.1 kg; P < 0.000). Total body water was reduced in the 56-km race (-1.4 ± 1.1 kg; P < 0.001). A negative linear relationship was found between percentage change (%Δ) in TBW and %Δ in BM in the 56-km runners (r = 0.6; P < 0.01). Plasma osmolality and [TP] increased significantly in the 56-km runners (6.8 ± 8.2 mOsm/kg H2O; P < 0.05 and 5.4 ± 4.4 g/L; P < 0.01, respectively), but all other biochemical measures were within the normal range. CONCLUSIONS Although TBW decreased in the 56-km race and was maintained in the 21.1-km race, the change in TBW over both races was less than the BM, suggesting that not all BM lost during endurance exercise is a result purely of an equivalent reduction in TBW. These findings support the interpretation that the body primarily defends p[Na] and not BM during exercise and that a reduction in BM can occur without an equivalent reduction in TBW during prolonged exercise. Furthermore, these data support that drinking without controlling for BM loss may allow athletes to complete these events.
Collapse
|
5
|
Spaněl P, Smith D. Progress in SIFT-MS: breath analysis and other applications. MASS SPECTROMETRY REVIEWS 2011; 30:236-267. [PMID: 20648679 DOI: 10.1002/mas.20303] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/12/2009] [Accepted: 09/12/2009] [Indexed: 05/29/2023]
Abstract
The development of selected ion flow tube mass spectrometry, SIFT-MS, is described from its inception as the modified very large SIFT instruments used to demonstrate the feasibility of SIFT-MS as an analytical technique, towards the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on-line breath analyses. The essential physics and engineering principles are discussed, which must be appreciated to design and construct a SIFT-MS instrument. The versatility and sensitivity of the Profile 3 instrument is illustrated by typical mass spectra obtained using the three precursor ions H(3)O(+), NO(+) and O(2)(+)·, and the need to account for differential ionic diffusion and mass discrimination in the analytical algorithms is emphasized to obtain accurate trace gas analyses. The performance of the Profile 3 instrument is illustrated by the results of several pilot studies, including (i) on-line real time quantification of several breath metabolites for cohorts of healthy adults and children, which have provided representative concentration/population distributions, and the comparative analyses of breath exhaled via the mouth and nose that identify systemic and orally-generated compounds, (ii) the enhancement of breath metabolites by drug ingestion, (iii) the identification of HCN as a marker of Pseudomonas colonization of the airways and (iv) emission of volatile compounds from urine, especially ketone bodies, and from skin. Some very recent developments are discussed, including the quantification of carbon dioxide in breath and the combination of SIFT-MS with GC and ATD, and their significance. Finally, prospects for future SIFT-MS developments are alluded to.
Collapse
Affiliation(s)
- Patrik Spaněl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23, Prague 8, Czech Republic.
| | | |
Collapse
|
6
|
NOLTE HEINRICH, NOAKES TIMOTHYD, VAN VUUREN BERNARD. Ad Libitum Fluid Replacement in Military Personnel during a 4-h Route March. Med Sci Sports Exerc 2010; 42:1675-80. [DOI: 10.1249/mss.0b013e3181d6f9d0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Quantitative Analysis of Bulk Flow in Image-Based Hemodynamic Models of the Carotid Bifurcation: The Influence of Outflow Conditions as Test Case. Ann Biomed Eng 2010; 38:3688-705. [DOI: 10.1007/s10439-010-0102-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
8
|
Dryahina K, Smith D, Spanel P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1296-1304. [PMID: 20391601 DOI: 10.1002/rcm.4513] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague 8, Czech Republic
| | | | | |
Collapse
|
9
|
Smith D, Pysanenko A, Spanel P. Kinetics of ethanol decay in mouth- and nose-exhaled breath measured on-line by selected ion flow tube mass spectrometry following varying doses of alcohol. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1066-74. [PMID: 20213689 DOI: 10.1002/rcm.4481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A study has been carried out of the decay of ethanol in mouth-exhaled and nose-exhaled breath of two healthy volunteers following the ingestion of various doses of alcohol at different dilutions in water. Concurrent analyses of sequential single breath exhalations from the two volunteers were carried out using selected ion flow tube mass spectrometry, SIFT-MS, on-line and in real time continuously over some 200 min following each alcohol dose by simply switching sampling between the two volunteers. Thus, the time interval between breath exhalations was only a few minutes, and this results in well-defined decay curves. Inspection of the mouth-exhaled and nose-exhaled breath data shows that mouth contamination of ethanol diminished to insignificant levels after a few minutes. The detailed results of the analyses of nose-exhaled breath show that the peak levels and the decay rates of breath ethanol are dependent on the ethanol dose and the volume of ethanol/water mixture ingested. From these data, both the efficiency of the first-pass metabolism of ethanol and the indications of gastric emptying rates at the various doses and ingested volumes have been obtained for the two volunteers. Additionally and simultaneously, acetaldehyde, acetic acid and acetone were measured in each single breath exhalation. Acetaldehyde, the primary product of ethanol metabolism, is seen to track the breath ethanol. Acetic acid, a possible secondary product of this metabolism, was detected in the exhaled breath, but was shown to largely originate in the oral cavity. Breath acetone was seen to increase over the long period of measurement due to the depletion of nutrients.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| | | | | |
Collapse
|
10
|
Fluid Intake and Changes in Blood Biochemistry, Running Speed and Body Mass During an 80 km Mountain Trail Race. ACTA ACUST UNITED AC 2009. [DOI: 10.2478/v10036-009-0017-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kushch I, Arendacká B, Stolc S, Mochalski P, Filipiak W, Schwarz K, Schwentner L, Schmid A, Dzien A, Lechleitner M, Witkovský V, Miekisch W, Schubert J, Unterkofler K, Amann A. Breath isoprene--aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med 2008; 46:1011-8. [PMID: 18605961 DOI: 10.1515/cclm.2008.181] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study was performed to clarify variations in breath isoprene concentrations with age, gender, body mass index (BMI) and total serum cholesterol. Our cohort consisted of 205 adult volunteers of different smoking background without health complaints. Total cholesterol in blood serum was measured in 79 of these volunteers. METHODS Mixed expiratory exhaled breath was sampled using Tedlar bags. Concentrations of isoprene were then determined using proton transfer reaction-mass spectrometry. RESULTS Isoprene concentrations ranged from 5.8 to 274.9 ppb, with an overall geometric mean (GM) of 99.3 ppb. There was no statistically significant difference in mean isoprene in breath between males and females (GM 105.4 and 95.5 ppb, respectively). Ageing led to a decrease in concentration in men, with an estimated slope of the regression line for log-transformed isoprene concentrations of -0.0049, but did not influence isoprene levels in women. We did not observe any significant correlation between isoprene breath content and cholesterol level in blood, even after adjusting for the possible influence of age. Similarly, no correlation was found between isoprene levels and BMI. CONCLUSIONS Isoprene concentrations in exhaled breath showed gender-specific correlations with respect to age. Further investigations are necessary to clarify the relation between isoprene concentrations in exhaled breath and cholesterol levels and synthesis rates in blood.
Collapse
Affiliation(s)
- Ievgeniia Kushch
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spanĕl P, Smith D. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:77-82. [PMID: 17878543 DOI: 10.1255/ejms.843] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selected ion flow tube mass spectrometry, (SIFT-MS), is a technique for simultaneous real-time quantification of several trace gases in air and exhaled breath. It relies on chemical ionization of the trace gas molecules in air/breath samples introduced into helium carrier gas, using H(3)O(+), NO(+) and O(2)(+) reagent (precursor ions). Reactions between the precursor ions and the trace gas molecules proceed for an accurately defined time, the precursor and product ions being detected and counted by a downstream mass spectrometer. Absolute concentrations of trace gases in single breath exhalation can be determined by SIFT-MS down to parts-per-billion (ppb) levels, obviating sample collection into bags or onto traps. Calibration using chemical standards is not required, as the concentrations are calculated using the known reaction rate constants and measured flow rates and pressures. SIFT-MS has been used for many pilot investigations in several areas of research, especially as a non-invasive breath analysis tool to investigate physiological processes in humans and animals, for clinical diagnosis and for therapeutic monitoring. Examples of the results obtained from several such studies are outlined to demonstrate the potential of SIFT-MS for trace gas analysis of air, exhaled breath and the headspace above liquids.
Collapse
Affiliation(s)
- P Spanĕl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, Prague, 18223 Czech Republic
| | | |
Collapse
|
13
|
Smith D, Wang T, Spanel P, Bloor R. The increase of breath ammonia induced by niacin ingestion quantified by selected ion flow tube mass spectrometry. Physiol Meas 2006; 27:437-44. [PMID: 16603796 DOI: 10.1088/0967-3334/27/6/001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ingestion of relatively large doses of the vitamin niacin by healthy volunteers results in a reddening of the skin, a skin 'flush'. Thus, we have carried out a study of the breath metabolites of two healthy volunteers following (i) the ingestion of 200 mg of immediate-release niacin, (ii) as (i) but preceded by the ingestion of 325 mg of aspirin that diminishes the skin 'flush', (iii) ingestion of 500 mg of slow-release niacin. On-line breath analysis was carried out using selected ion flow tube mass spectrometry, SIFT-MS. The interesting new observation is that the breath ammonia levels of both volunteers clearly increased following (i) and (ii), and an obvious skin flush did occur following (i) but not following (ii). The slow-release niacin (iii) did not result in a flush and the breath ammonia levels increased more slowly and did not reach the higher levels produced by (i) and (ii). The results of these experiments demonstrate that breath ammonia levels are dependent on the blood/plasma levels of niacin, but are not directly related to the flushing phenomenon, and that the observed increases in blood/breath ammonia levels are consistent with current knowledge of the metabolic pathways of niacin. The parallel measurements of breath isoprene are presented, which demonstrate the quality of breath analyses that can be achieved using SIFT-MS.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK.
| | | | | | | |
Collapse
|
14
|
Wang T, Carroll W, Lenny W, Boit P, Smith D. The analysis of 1-propanol and 2-propanol in humid air samples using selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:125-30. [PMID: 16331744 DOI: 10.1002/rcm.2285] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Following the observation that propanol is present in the breath samples of cystic fibrosis (CF) patients infected by Pseudomonas aeruginosa (PA), a study of the reactions of H(3)O(+), NO(+) and O(2) (+.) with 1-propanol and 2-propanol has been conducted using selected ion flow tube mass spectrometry (SIFT-MS). In this study the number and the distribution of the product ions from NO(+) reactions with the two propanol isomers under humid air conditions were able to differentiate between the two isomers. The reaction mechanisms and the structures of the product ions for these reactions, especially those with H(3)O(+) and NO(+), have been proposed. As an example, 2-propanol was shown to be present in a breath sample from one CF patient infected with PA, and also in a PA isolate from another CF patient grown on Pseudomonas-selective media. The results of this study allow an analytical procedure to be advanced for the analysis of the two propanol isomers, which can also be utilised in other applications.
Collapse
Affiliation(s)
- Tianshu Wang
- Institute of Science and Technology in Medicine, Medical School, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, UK.
| | | | | | | | | |
Collapse
|