1
|
El Attafi A, El Alami H, Bossoufi B, AlQahtani D, Motahhir S, Almalki MM, Alghamdi TA. Robust control of a wind energy conversion system: FPGA real-time implementation. Heliyon 2024; 10:e35712. [PMID: 39170361 PMCID: PMC11336840 DOI: 10.1016/j.heliyon.2024.e35712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
This study employs an FPGA board to implement a robust control technique for wind energy conversion systems (WECS). This approach facilitates extensive testing and validation of the control system across diverse wind conditions, utilizing the FPGA's parallel processing capabilities and advanced control algorithms. This method ensures robustness against nonlinearities and system uncertainties. FPGA-in-the-loop (FIL) testing provides precise and effective simulation results, enabling rapid prototyping and iterative modifications of control algorithms. The effectiveness of the robust control strategy is confirmed by FIL findings, demonstrating significant improvements in WECS stability and efficiency. Furthermore, the study highlights the strategy's potential to enhance WECS reliability and efficiency in real-world applications.
Collapse
Affiliation(s)
- Abdelhafid El Attafi
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30003, Morocco
| | - Houda El Alami
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30003, Morocco
| | - Badre Bossoufi
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, 30003, Morocco
| | - Dokhyl AlQahtani
- Department of Electrical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Saad Motahhir
- ENSA, Sidi Mohammed Ben Abdellah University, Fez, 30000, Morocco
| | - Mishari Metab Almalki
- Department of Electrical Engineering, Faculty of Engineering, Al-Baha University, Alaqiq, KSA, Saudi Arabia
| | - Thamer A.H. Alghamdi
- Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
- Electrical Engineering Department, Faculty of Engineering, Al-Baha University, Al-Baha, 65779, Saudi Arabia
| |
Collapse
|
2
|
Shishvan OR, Abdelwahab A, da Rosa NB, Saulnier GJ, Mueller JL, Newell J, Isaacson D. ACT5 Electrical Impedance Tomography System. IEEE Trans Biomed Eng 2024; 71:227-236. [PMID: 37459258 PMCID: PMC10798853 DOI: 10.1109/tbme.2023.3295771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This article introduces the Adaptive Current Tomograph 5 (ACT5) Electrical Impedance Tomography (EIT) system. ACT5 is a 32 electrode applied-current multiple-source EIT system that can display real-time images of conductivity and susceptivity at 27 frames per second. The adaptive current sources in ACT5 can apply fully programmable current patterns with frequencies varying from 5 kHz to 500 kHz. The system also displays real-time ECG readings during the EIT imaging process. METHODS The hardware and software design and specifications are presented, including the current source design, FPGA hardware, safety features, calibration, and shunt impedance measurement. RESULTS Images of conductivity and susceptivity are presented from ACT5 data collected on tank phantoms and a human subject illustrating the system's ability to provide real-time images of pulsatile perfusion and ECG traces. SIGNIFICANCE The portability, high signal-to-noise ratio, and flexibility of applied currents over a wide range of frequencies enable this instrument to be used to obtain useful human subject data with relative clinical ease.
Collapse
|
3
|
A Run-Time Reconfiguration Method for an FPGA-Based Electrical Capacitance Tomography System. ELECTRONICS 2022. [DOI: 10.3390/electronics11040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A desirable feature of an electrical capacitance tomography system is the adaptation possibility to any sensor configuration and measurement mode. A run-time reconfiguration of a system for electrical capacitance tomography is presented. An original mechanism is elaborated to reconfigure, on the fly, a modular EVT4 system with multiple FPGAs installed. The outlined system architecture is based on FPGA programmable logic devices (Xilinx Spartan) and PicoBlaze soft-core processors. Soft-core processors are used for communication, measurement control and data preprocessing. A novel method of FPGA partial reconfiguration is described, in which a PicoBlaze soft-core processor is used as a reconfiguration controller. Behavioral reconfiguration of the system is obtained by providing run-time access to the program code of a soft-core control processor. The tests using EVT4 hardware and different algorithms for tomographic scanning were performed. A test object was measured using 2D and 3D sensors. The time and resources required for the examined reconfiguration procedure are evaluated.
Collapse
|
4
|
Morcelles KF, Bertemes-Filho P. Hardware for cell culture electrical impedance tomography: A critical review. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:104704. [PMID: 34717415 DOI: 10.1063/5.0053707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Human cell cultures are powerful laboratory tools for biological models of diseases, drug development, and tissue engineering. However, the success of biological experiments often depends on real-time monitoring of the culture state. Conventional culture evaluation methods consist of end-point laborious techniques, not capable of real-time operation and not suitable for three-dimensional cultures. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique with high potential to be used in cell culture monitoring due to its biocompatibility, non-invasiveness, high temporal resolution, compact hardware, automatic operation, and high throughput. This review approaches the different hardware strategies for cell culture EIT that are presented in the literature, discussing the main components of the measurement system: excitation circuit, voltage/current sensing, switching stage, signal specifications, electrode configurations, measurement protocols, and calibration strategies. The different approaches are qualitatively discussed and compared, and design guidelines are proposed.
Collapse
Affiliation(s)
- K F Morcelles
- Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil
| | - P Bertemes-Filho
- Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil
| |
Collapse
|
5
|
Padilha Leitzke J, Zangl H. A Review on Electrical Impedance Tomography Spectroscopy. SENSORS 2020; 20:s20185160. [PMID: 32927685 PMCID: PMC7571205 DOI: 10.3390/s20185160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/24/2022]
Abstract
Electrical Impedance Tomography Spectroscopy (EITS) enables the reconstruction of material distributions inside an object based on the frequency-dependent characteristics of different substances. In this paper, we present a review of EITS focusing on physical principles of the technology, sensor geometries, existing measurement systems, reconstruction algorithms, and image representation methods. In addition, a novel imaging method is proposed which could fill some of the gaps found in the literature. As an example of an application, EITS of ice and water mixtures is used.
Collapse
|
6
|
Han B, Xu Y, Dong F. Design of current source for multi-frequency simultaneous electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:094709. [PMID: 28964244 DOI: 10.1063/1.5004185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.
Collapse
Affiliation(s)
- Bing Han
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yanbin Xu
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Feng Dong
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Yang Y, Jia J. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:085110. [PMID: 28863695 DOI: 10.1063/1.4999359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.
Collapse
Affiliation(s)
- Yunjie Yang
- Agile Tomography Group, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Jiabin Jia
- Agile Tomography Group, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
8
|
Sohal H, Wi H, McEwan AL, Woo EJ, Oh TI. Electrical impedance imaging system using FPGAs for flexibility and interoperability. Biomed Eng Online 2014; 13:126. [PMID: 25174492 PMCID: PMC4158054 DOI: 10.1186/1475-925x-13-126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern EIT systems require simultaneously operating multiple functions for flexibility, interoperability, and clinical applicability. To implement versatile functions, expandable design and implementation tools are needed. On the other hand, it is necessary to develop an ASIC-based EIT system to maximize its performance. Since the ASIC design is expensive and unchangeable, we can use FPGAs as a prior step to the digital ASIC design and carefully classify which functions should be included in the ASIC. In this paper, we describe the details of the FPGA design adopted in the KHU Mark2.5 EIT system. METHODS We classified all functions of the KHU Mark2.5 EIT system into two categories. One is the control and processing of current injection and voltage measurement. The other includes the collection and management of the multi-channel data with timing controls for internal and external interconnections. We describe the implementation of these functions in two kinds of FPGAs called the impedance measurement module (IMM) FPGA and the intra-network controller FPGA. RESULTS We present functional and timing simulations of the key functions in the FPGAs. From phantom and animal imaging experiments, we show that multiple functions of the system are successfully implemented in the FPGAs. As examples, we demonstrate fast multi-frequency imaging and ECG-gated imaging. CONCLUSION Given an analog design of a parallel EIT system, it is important to optimize its digital design to minimize systematic artifacts and maximize performance. This paper described technical details of the FPGA-based fully parallel EIT system called the KHU Mark2.5 with numerous functions needed for clinical applications. Two kinds of FPGAs described in this paper can be used as a basis for future EIT digital ASIC designs for better application-specific human interface as well as hardware performance.
Collapse
Affiliation(s)
| | | | | | | | - Tong In Oh
- Department of Biomedical Engineering and Impedance Imaging Research Center, Kyung Hee University, 446-701 Yongin, Korea.
| |
Collapse
|
9
|
Campisi MS, Barbre C, Chola A, Cunningham G, Woods V, Viventi J. Breast cancer detection using high-density flexible electrode arrays and electrical impedance tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:1131-1134. [PMID: 25570162 DOI: 10.1109/embc.2014.6943794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While mammography remains the gold standard for breast cancer screening, additional adjunctive tools for early detection of breast cancer are needed especially for young women, women with dense breast tissue and those at increased risk due to genetic factors. These patient populations, along with those populations for whom mammography is not readily available, require alternative technologies capable of effectively detecting breast cancer. One such adjunctive modality for breast cancer detection is Electrical Impedance Tomography (EIT). It is a non-invasive technique that measures tissue conductivity by injecting a small current through a surface electrode while measuring electrode voltage(s). The surface measurements are then used to reconstruct a conductivity mapping of the tissue. The difference in conductivities between healthy tissue and that of carcinoma enable EIT to detect cancer. Electrical Impedance Tomography does not subject the patient to ionizing radiation, and offers significant potential for detecting very small tumors in early stages of development at a low cost. While prior systems have demonstrated success using EIT for breast cancer detection, the resolution of the reconstructed image was limited by the spatial resolution of the sensing electrode array. Here, we report the use of higher density (3mm spacing) flexible micro-electrode arrays to obtain tissue impedance maps. Accurate EIT reconstruction is highly dependent on the spatial resolution and fidelity of the surface measurements. High-density, flexible arrays that conform to the breast surface can offer great potential in reconstructing higher resolution conductivity maps than have been previously achieved.
Collapse
|
10
|
Caruana LR, Paratz J, Chang AT, Fraser JF. Electrical impedance tomography in the clinical assessment of lung volumes following recruitment manoeuvres. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/1743288x10y.0000000021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|