1
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Xue N, Hou X, Qiu XP, Song X, Feng Q, Liu X. Synthesis and solution properties of telechelic poly(2-isopropyl-2-oxazoline) bearing perfluoro end groups. Polym Chem 2022. [DOI: 10.1039/d2py00815g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Telechelic FPIPOZ and its precursor N3PIPOZ films reassembled into discs and short fibers, respectively, when exposed to THF vapor.
Collapse
Affiliation(s)
- Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xiaoming Hou
- Department of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xing-Ping Qiu
- Department of Chemistry, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC H3C 3J7, Canada
| | - Xiaotao Song
- Department of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Qingguo Feng
- Department of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
| |
Collapse
|
4
|
Wolfram F, Böttcher J, Lesser TG. MR imaging of pulmonary lung nodules during one lung flooding: first morphological evaluation using an ex vivo human lung model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:537-547. [PMID: 31950391 DOI: 10.1007/s10334-020-00826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Magnetic resonance imaging in pulmonary oncology is limited because of unfavourable physical and physiological conditions in ventilated lung. Previous work showed operability of One Lung Flooding using saline in vivo in MR units, and that valuable conditions for ultrasound and thermal-based interventions exist. Therefore, this study investigates the morphological details of human lung during Lung Flooding to evaluate its further value focusing on MR-guided interventions. MATERIALS AND METHODS MR imaging was performed on 20 human lung lobes containing lung cancer and metastases. Lobes were intraoperatively flooded with saline and imaged using T1w Gradient Echo and T2 Spin Echo sequences at 1.5 T. Additionally, six patients received pre-operative MRI. RESULTS During lung flooding, all lung tumours and metastases were visualized and clearly demarked from the surrounding lung parenchyma. The tumour mass appeared hyperintense in T1w and hypointense in T2w MR imaging. Intra-pulmonary bronchial structures were well differentiated in T2w and calcification in T1w MR sequences. CONCLUSION Superior conditions with new features of lung MRI were found during lung flooding with an unrestricted visualization of malignant nodules and clear demarcation of intra-pulmonary structures. This could lead to new applications of MR-based pulmonary interventions such as laser or focused ultrasound-based thermal ablations.
Collapse
Affiliation(s)
- Frank Wolfram
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Strasse des Friedens 122, 07548, Gera, Germany.
| | - Joachim Böttcher
- Institute of Diagnostic and Interventional Radiology, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Gera, Germany
| | - Thomas Günther Lesser
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Strasse des Friedens 122, 07548, Gera, Germany
| |
Collapse
|
5
|
Assessment of MR imaging during one-lung flooding in a large animal model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:581-590. [PMID: 31152266 DOI: 10.1007/s10334-019-00759-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of the lung remains challenging due to the low tissue density, susceptibility artefacts, unfavourable relaxation times and motion. Previously, we demonstrated in vivo that one-lung flooding (OLF) with saline is a viable and safe approach. This study investigates the feasibility of OLF in an MRI environment and evaluates the flooding process on MR images. METHODS OLF of the left lung was performed on five animals using a porcine model. Before, during and after OLF, standard T2w and T1w spin-echo (SE) and gradient-echo (GRE) sequences were applied at 3 T. RESULTS The procedure was successfully performed in all animals. On T1w MRI, the flooded lung appeared homogenous and isointense with muscle tissue. On T2w images, vascular structures were highly hypointense, while the bronchi were clearly demarcated with hypointense wall and hyperintense lumen. The anatomical demarcation of the flooded lung from the surrounding organs was superior on T2w images. No outflow effects were seen, and no respiration triggering was required. DISCUSSION OLF can be safely performed in an MR scanner with highly detailed visualization of the pulmonary structures on T2w images. The method provides new approaches to MRI-based image-guided pulmonary interventions using the presented experimental model.
Collapse
|
6
|
Xu X, Zhang R, Liu F, Ping J, Wen X, Wang H, Wang K, Sun X, Zou H, Shen B, Wu L. 19F MRI in orthotopic cancer model via intratracheal administration of ανβ3-targeted perfluorocarbon nanoparticles. Nanomedicine (Lond) 2018; 13:2551-2562. [PMID: 30338723 DOI: 10.2217/nnm-2018-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To demonstrate the feasibility of intratracheal administration in orthotopic lung cancer model with 19F MRI. Materials & methods: αvβ3-integrin targeting ability of the perfluorocarbon (PFC) nanoparticles was tested. Orthotopic lung cancer model was established in rabbits under computed tomography guidance. αvβ3-targeted PFC nanoparticles were administrated intratracheally or intravenously, and 19F MRI was performed before and up to 24 h after administration. Results: The targeted PFC nanoparticles could bind with αvβ3-integrin. PFC concentrations in the tumors of intratracheal group after administration were significantly higher than intravenous group. Conclusion: Intratracheal administration of PFC nanoparticles was shown to be feasible and efficacious. 19F MRI with αvβ3-targeted PFC nanoparticles provided quantitative assessment of nanoparticles distribution and tumor angiogenesis.
Collapse
Affiliation(s)
- Xiuan Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Ruixin Zhang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Fang Liu
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiaqi Ping
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaofei Wen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongbin Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongyan Zou
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Lina Wu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|