1
|
Jobim PFC, Iochims Dos Santos CE, Dias JF, Kelemen M, Pelicon P, Mikuš KV, Pascolo L, Gianoncelli A, Bedolla DE, Rasia-Filho AA. Human Neocortex Layer Features Evaluated by PIXE, STIM, and STXM Techniques. Biol Trace Elem Res 2023; 201:592-602. [PMID: 35258774 DOI: 10.1007/s12011-022-03182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
The human neocortex has a cytoarchitecture composed of six layers with an intrinsic organization that relates to afferent and efferent pathways for a high functional specialization. Various histological, neurochemical, and connectional techniques have been used to study these cortical layers. Here, we explore the additional possibilities of swift ion beam and synchrotron radiation techniques to distinguish cellular layers based on the elemental distributions and areal density pattern in the human neocortex. Temporal cortex samples were obtained from two neurologically normal adult men (postmortem interval: 6-12 h). A cortical area of 500 × 500 μm2 was scanned by a 3 MeV proton beam for elemental composition and areal density measurements using particle induced x-ray emission (PIXE) and scanning transmission ion microscopy (STIM), respectively. Zinc showed higher values in cortical layers II and V, which needs a critical discussion. Furthermore, the areal density decreased in regions with a higher density of pyramidal neurons in layers III and V. Scanning transmission X-ray microscopy (STXM) revealed the cellular density with higher lateral resolution than STIM, but not enough to distinguish each cortical lamination border. Our data describe the practical results of these approaches employing both X-ray and ion-beam based techniques for the human cerebral cortex and its heterogeneous layers. These results add to the potential approaches and knowledge of the human neocortical gray matter in normal tissue to develop improvements and address further studies on pathological conditions.
Collapse
Affiliation(s)
- Paulo Fernandes Costa Jobim
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | - Katarina Vogel Mikuš
- Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lorella Pascolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Diana Eva Bedolla
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Alberto Antônio Rasia-Filho
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Coyte RM, Darrah TH, Barrett E, O'Connor TG, Olesik JW, Salafia CM, Shah R, Love T, Miller RK. Comparison of trace element concentrations in paired formalin-fixed paraffin-embedded and frozen human placentae. Placenta 2023; 131:98-103. [PMID: 36577279 DOI: 10.1016/j.placenta.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION There is increasing interest in measuring metals concentrations in human placentas to better understand physiology, disease, and toxic and diagnostic exposures. For these purposes, formalin-fixed paraffin embedded (FFPE) tissues obtained at clinical pathology examination represent a valuable potential store of well-characterized tissues for analysis. However, the limited data that exist comparing metal concentrations in FFPE tissue to recently collected frozen tissues paints a confusing picture, and there is no published data directly comparing frozen and FFPE placental villus tissues. METHODS Paired samples of fresh frozen and FFPE tissue from 22 rapidly processed human singleton placentae were weighed and digested using standard clean laboratory procedures and subsequently analyzed for a suite of 13 metals using a PerkinElmer DRC II ICP-MS. The analytical results were compared using either a paired t-test or a sign test depending on data normality. RESULTS Concentrations of metals (aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), gadolinium (Gd), mercury (Hg), manganese (Mn), lead (Pb), strontium (Sr), and zinc (Zn)) measured in both types of tissue preparations (frozen and FFPE) displayed a consistent range with other studies and did not display significantly different values from each of the paired specimens for any of the 13 specific metals analyzed. DISCUSSION Within placentae, metals concentrations of measured trace, toxic and diagnostic elements (Al, As, Ba, Cd, Cr, Cu, Fe, Gd, Hg, Mn, Pb, Sr, and Zn) are consistent between FFPE and fresh placental villus tissue, without indications of systematic element loss or bias. FFPE from archived pathology specimens may offer an important and convenient alternative for measuring trace metals in human frozen placental tissues.
Collapse
Affiliation(s)
- Rachel M Coyte
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas H Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA; Global Water Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Psychiatry, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - John W Olesik
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Carolyn M Salafia
- Placental Modulation Laboratory, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Placental Analytics LLC, Larchmont, NY, USA
| | - Ruchit Shah
- Placental Modulation Laboratory, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Placental Analytics LLC, Larchmont, NY, USA
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Departments of Pediatrics, Pathology and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Dao E, Clavijo Jordan MV, Geraki K, Martins AF, Chirayil S, Sherry AD, Farquharson MJ. Using micro-synchrotron radiation x-ray fluorescence (µ-SRXRF) for trace metal imaging in the development of MRI contrast agents for prostate cancer imaging. J Trace Elem Med Biol 2022; 74:127054. [PMID: 35939923 PMCID: PMC9940726 DOI: 10.1016/j.jtemb.2022.127054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Contrast agents (CA) are administered in magnetic resonance imaging (MRI) clinical exams to measure tissue perfusion, enhance image contrast between adjacent tissues, or provide additional biochemical information in molecular MRI. The efficacy of a CA is determined by the tissue distribution of the agent and its concentration in the extracellular space of all tissues. METHODS In this work, micro-synchrotron radiation x-ray fluorescence (µ-SRXRF) was used to examine and characterize a gadolinium-based zinc-sensitive agent (GdL2) currently under development for detection of prostate cancer (PCa) by MRI. Prostate tissue samples were collected from control mice and mice with known PCa after an MRI exam that included injection of GdL2. The samples were raster scanned to investigate trends in Zn, Gd, Cu, Fe, S, P, and Ca. RESULTS Significant Zn and Gd co-localization was observed in both healthy and malignant tissues. In addition, a marked decrease in Zn was found in the lateral lobe of the prostate obtained from mice with PCa. CONCLUSION We demonstrate here that µ-SRXRF is a useful tool for monitoring the distribution of several elements including Zn and Gd in animal models of cancer. The optimized procedures for tissue preparation, processing, data collection, and analysis are described.
Collapse
Affiliation(s)
- E Dao
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany.
| | - M V Clavijo Jordan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany
| | - K Geraki
- Diamond Light Source, Harwell, Didcot OX11 0DE, United Kingdom; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany
| | - A F Martins
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany
| | - S Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany
| | - A D Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany; Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, United States
| | - M J Farquharson
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Germany; School of Interdisciplinary Science, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Khabir Z, Holmes AM, Lai YJ, Liang L, Deva A, Polikarpov MA, Roberts MS, Zvyagin AV. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int J Mol Sci 2021; 22:12372. [PMID: 34830253 PMCID: PMC8618668 DOI: 10.3390/ijms222212372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Zinc oxide nanoparticle (ZnO NP)-based sunscreens are generally considered safe because the ZnO NPs do not penetrate through the outermost layer of the skin, the stratum corneum (SC). However, cytotoxicity of zinc ions in the viable epidermis (VE) after dissolution from ZnO NP and penetration into the VE is ill-defined. We therefore quantified the relative concentrations of endogenous and exogenous Zn using a rare stable zinc-67 isotope (67Zn) ZnO NP sunscreen applied to excised human skin and the cytotoxicity of human keratinocytes (HaCaT) using multiphoton microscopy, zinc-selective fluorescent sensing, and a laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) methodology. Multiphoton microscopy with second harmonic generation imaging showed that 67ZnO NPs were retained on the surface or within the superficial layers of the SC. Zn fluorescence sensing revealed higher levels of labile and intracellular zinc in both the SC and VE relative to untreated skin, confirming that dissolved zinc species permeated across the SC into the VE as ionic Zn and significantly not as ZnO NPs. Importantly, the LA-ICP-MS estimated exogenous 67Zn concentrations in the VE of 1.0 ± 0.3 μg/mL are much lower than that estimated for endogenous VE zinc of 4.3 ± 0.7 μg/mL. Furthermore, their combined total zinc concentrations in the VE are much lower than the exogenous zinc concentration of 21 to 31 μg/mL causing VE cytotoxicity, as defined by the half-maximal inhibitory concentration of exogenous 67Zn found in human keratinocytes (HaCaT). This speaks strongly for the safety of ZnO NP sunscreens applied to intact human skin and the associated recent US FDA guidance.
Collapse
Affiliation(s)
- Zahra Khabir
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- ARC Centre of Excellence for Nanoscale BioPhotonics, Sydney 2109, Australia
| | - Amy M. Holmes
- Clinical Health Sciences and Basil Hetzel Institute for Translational Health Research, University of South Australia, Adelaide 5000, Australia;
| | - Yi-Jen Lai
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
| | - Liuen Liang
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- ARC Centre of Excellence for Nanoscale BioPhotonics, Sydney 2109, Australia
| | - Anand Deva
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
| | | | - Michael S. Roberts
- Clinical Health Sciences and Basil Hetzel Institute for Translational Health Research, University of South Australia, Adelaide 5000, Australia;
- Diamantina Institute, University of Queensland, Brisbane 4072, Australia
| | - Andrei V. Zvyagin
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- Centre of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
5
|
Dao E, Zeller MP, Wainman BC, Farquharson MJ. Feasibility of the use of a handheld XRF analyzer to measure skin iron to monitor iron levels in critical organs. J Trace Elem Med Biol 2018; 50:305-311. [PMID: 30262296 DOI: 10.1016/j.jtemb.2018.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023]
Abstract
There exists a need for accurate, non-invasive point-of-care tests to detect body iron burden. This study investigated the use of x-ray fluorescence (XRF) measurements of skin iron as a marker for organ iron content in rats. This study also evaluated a novel application of a commercial XRF device, commonly used in mining and construction, as a rapid, portable, and non-invasive measurement tool. Rats (n = 32) were loaded with iron dextran and the iron signal of each animal's skin, liver, and kidney was measured using a conventional XRF system. A quadratic correlation was observed between liver and skin iron signal (R2 = 0.92) and a linear correlation was observed between kidney and skin iron signal (R2 = 0.65). As such, it is concluded that skin iron content can act as a marker for both liver and kidney iron content. The same skin samples were measured using the portable XRF device and compared to the liver and kidney samples measured in the conventional XRF system. Again, a quadratic correlation was observed between liver and skin iron signal (R2 = 0.91) and a linear correlation was observed between kidney and skin iron signal (R2 = 0.83). Thus, the portable XRF device can provide rapid non-invasive, skin XRF measurements. Dosimetry was performed using the portable XRF device to assess the radiological hazard associated with its use. The average skin equivalent dose from this device is 30 ± 10 mSv/min, when the device is collimated and operated at 40 kV. In conclusion, skin iron XRF measurements can act as a surrogate marker for liver iron content, and can be measured using a commercial XRF device for a portable, fast, and non-invasive measurement.
Collapse
Affiliation(s)
- E Dao
- Radiation Sciences Graduate Program, McMaster University, 1280 Main St. W., Tandem Accelerator Building Room 104C, Hamilton, ON, L8S 4K1, Canada.
| | - M P Zeller
- McMaster Centre for Transfusion Research, Department of Medicine, McMaster University, Hamilton, ON, L8N 3Z5 Canada; Canadian Blood Services, Ancaster, Canada
| | - B C Wainman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8N 3Z5 Canada
| | - M J Farquharson
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, L8S 4K1 Canada
| |
Collapse
|
6
|
Oakden W, Bock NA, Al-Ebraheem A, Farquharson MJ, Stanisz GJ. Early regional cuprizone-induced demyelination in a rat model revealed with MRI. NMR IN BIOMEDICINE 2017; 30:e3743. [PMID: 28544286 DOI: 10.1002/nbm.3743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/23/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The cuprizone model of demyelination is well established in the mouse as a tool for the study of the mechanisms of both demyelination and remyelination. It is often desirable, however, to have a larger model, such as the rat, especially for imaging-based studies, yet initial work has failed to show demyelination in cuprizone-fed rats. Several recent studies have demonstrated demyelination in the rat, but only in the corpus callosum. In this study, we acquired high-resolution, three-dimensional images of the whole brain every 2 weeks, using a T1 -weighted magnetization-prepared rapid acquisition gradient echo imaging sequence, optimized for myelin contrast, in order to assess myelination across the entire rat brain over a period of 8 weeks on a 1% cuprizone diet. We observed a consistent pattern of demyelination, beginning in the cerebellum by 4 weeks and involving more rostral regions of the brain by 8 weeks on the cuprizone diet, with validation using Luxol fast blue histology. This imaging technique permits the effects of cuprizone-induced demyelination to be followed longitudinally in a single animal, over the entire brain. In turn, this may facilitate the establishment of the cuprizone model of demyelination in the rat.
Collapse
Affiliation(s)
- Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicholas A Bock
- Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Ontario, Canada
| | - Alia Al-Ebraheem
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, Canada
| | | | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy. Anal Bioanal Chem 2015; 407:6839-50. [PMID: 26138895 DOI: 10.1007/s00216-015-8861-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80 °C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈40 % with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images.
Collapse
|