1
|
Shi Y, Gao Y, Xu Q, Li Y, Mou X, Liang Z. Learned Tensor Neural Network Texture Prior for Photon-Counting CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3830-3842. [PMID: 38753483 DOI: 10.1109/tmi.2024.3402079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Photon-counting computed tomography (PCCT) reconstructs multiple energy-channel images to describe the same object, where there exists a strong correlation among different channel images. In addition, reconstruction of each channel image suffers photon count starving problem. To make full use of the correlation among different channel images to suppress the data noise and enhance the texture details in reconstructing each channel image, this paper proposes a tensor neural network (TNN) architecture to learn a multi-channel texture prior for PCCT reconstruction. Specifically, we first learn a spatial texture prior in each individual channel image by modeling the relationship between the center pixels and its corresponding neighbor pixels using a neural network. Then, we merge the single channel spatial texture prior into multi-channel neural network to learn the spectral local correlation information among different channel images. Since our proposed TNN is trained on a series of unpaired small spatial-spectral cubes which are extracted from one single reference multi-channel image, the local correlation in the spatial-spectral cubes is considered by TNN. To boost the TNN performance, a low-rank representation is also employed to consider the global correlation among different channel images. Finally, we integrate the learned TNN and the low-rank representation as priors into Bayesian reconstruction framework. To evaluate the performance of the proposed method, four references are considered. One is simulated images from ultra-high-resolution CT. One is spectral images from dual-energy CT. The other two are animal tissue and preclinical mouse images from a custom-made PCCT systems. Our TNN prior Bayesian reconstruction demonstrated better performance than other state-of-the-art competing algorithms, in terms of not only preserving texture feature but also suppressing image noise in each channel image.
Collapse
|
2
|
Wu W, Pan J, Wang Y, Wang S, Zhang J. Multi-Channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3461-3475. [PMID: 38466593 DOI: 10.1109/tmi.2024.3376414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of the iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from the intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
Collapse
|
3
|
Yu X, Cai A, Li L, Jiao Z, Yan B. Low-dose spectral reconstruction with global, local, and nonlocal priors based on subspace decomposition. Quant Imaging Med Surg 2023; 13:889-911. [PMID: 36819241 PMCID: PMC9929412 DOI: 10.21037/qims-22-647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/02/2022] [Indexed: 01/08/2023]
Abstract
Background Multienergy computed tomography (MECT) is a promising imaging modality for material decomposition, lesion detection, and other clinical applications. However, there is an urgent need to design efficient and accurate algorithms to solve the inverse problems related to spectral reconstruction and improve image quality, especially under low-dose and incomplete datasets. The key issue for MECT reconstruction is how to efficiently describe the interchannel and intrachannel priors in multichannel images. Methods In this model, in order to correlate the similarities of interchannel images and regularize the multichannel images, the global, local, and nonlocal priors are jointly integrated into the low-dose MECT reconstruction model. First, the subspace decomposition method first employs the global low-rankness to map the original MECT images to the low-dimensional eigenimages. Then, nonlocal self-similarity of the eigenimages is cascaded into the optimization model. Additionally, the L0 quasi-norm on gradient images is incorporated into the proposed method to further enhance the local sparsity of intrachannel images. The alternating direction method is applied to solve the optimization model in an iterative scheme. Results Simulation, preclinical, and real datasets were applied to validate the effectiveness of the proposed method. From the simulation dataset, the new method was found to reduce the root-mean-square error (RMSE) by 42.31% compared with the latest research fourth-order nonlocal tensor decomposition MECT reconstruction (FONT-SIR) method under 160 projection views. The calculation time of an iteration for the proposed method was 23.07% of the FONT-SIR method. The results of material decomposition in real mouse data further confirmed the accuracy of the proposed method for different materials. Conclusions We developed a method in which the global, local, and nonlocal priors are jointly used to develop the reconstruction model for low-dose MECT, where the global low-rankness and nonlocal prior are cascaded by subspace decomposition and block-matching, and the L0 sparsity is applied to express the local prior. The results of the experiments demonstrate that the proposed method based on subspace improves computational efficiency and has advantages in noise suppression and structure preservation over competing algorithms.
Collapse
Affiliation(s)
- Xiaohuan Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ailong Cai
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Lei Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Zhiyong Jiao
- Beijing Science and Technology Information Research Center, Beijing, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| |
Collapse
|
4
|
He Y, Zeng L, Xu Q, Wang Z, Yu H, Shen Z, Yang Z, Zhou R. Spectral CT reconstruction via low-rank representation and structure preserving regularization. Phys Med Biol 2023; 68. [PMID: 36595335 DOI: 10.1088/1361-6560/acabf9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective:With the development of computed tomography (CT) imaging technology, it is possible to acquire multi-energy data by spectral CT. Being different from conventional CT, the X-ray energy spectrum of spectral CT is cut into several narrow bins which leads to the result that only a part of photon can be collected in each individual energy channel.This can severely degrade the image qualities. To address this problem, we propose a spectral CT reconstruction algorithm based on low-rank representation and structure preserving regularization in this paper.Approach:To make full use of the prior knowledge about both the inter-channel correlation and the sparsity in gradient domain of inner-channel data, this paper combines a low-rank correlation descriptor with a structure extraction operator as priori regularization terms for spectral CT reconstruction. Furthermore, a split-Bregman based iterative algorithm is developed to solve the reconstruction model. Finally, we propose a multi-channel adaptive parameters generation strategy according to CT values of each individual energy channel.Main results: Experimental results on numerical simulations and real mouse data indicate that the proposed algorithm achieves higher accuracy on both reconstruction and material decomposition than the methods based on simultaneous algebraic reconstruction technique (SART), total variation minimization (TVM), total variation with low-rank (LRTV), and spatial-spectral cube matching frame (SSCMF). Compared with SART, our algorithm improves the feature similarity (FSIM) by 40.4% on average for numerical simulation reconstruction, whereas TVM, LRTV, and SSCMF correspond to 26.1%, 28.2%, and 29.5%, respectively.Significance: We outline a multi-channel reconstruction algorithm tailored for spectral CT. The qualitative and quantitative comparisons present a significant improvement of image quality, indicating its promising potential in spectral CT imaging.
Collapse
Affiliation(s)
- Yuanwei He
- College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People's Republic of China.,Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | - Li Zeng
- College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People's Republic of China.,Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qiong Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
| | - Zhe Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
| | - Haijun Yu
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China.,Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhaoqiang Shen
- College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People's Republic of China.,Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhaojun Yang
- College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People's Republic of China.,Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | - Rifeng Zhou
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China.,Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China.,State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
5
|
Wu W, Yu H, Liu F, Zhang J, Vardhanabhuti V, Chen J. Spectral CT reconstruction via Spectral-Image Tensor and Bidirectional Image-gradient minimization. Comput Biol Med 2022; 151:106080. [PMID: 36327881 DOI: 10.1016/j.compbiomed.2022.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
It is challenging to obtain good image quality in spectral computed tomography (CT) as the photon-number for the photon-counting detectors is limited for each narrow energy bin. This results in a lower signal to noise ratio (SNR) for the projections. To handle this issue, we first formulate the weight bidirectional image gradient with L0-norm constraint of spectral CT image. Then, as a new regularizer, bidirectional image gradient with L0-norm constraint is introduced into the tensor decomposition model, generating the Spectral-Image Tensor and Bidirectional Image-gradient Minimization (SITBIM) algorithm. Finally, the split-Bregman method is employed to optimize the proposed SITBIM mathematical model. The experiments on the numerical mouse phantom and real mouse experiments are designed to validate and evaluate the SITBIM method. The results demonstrate that the SITBIM can outperform other state-of-the-art methods (including TVM, TV + LR, SSCMF and NLCTF). INDEX TERMS: -spectral CT, image reconstruction, tensor decomposition, unidirectional image gradient, image similarity.
Collapse
Affiliation(s)
- Weiwen Wu
- The School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; The University of Hong Kong, Hong Kong, 999077, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Fenglin Liu
- The Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jianjia Zhang
- The School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | | | | |
Collapse
|
6
|
Yao Y, Li L, Chen Z. Iterative dynamic dual-energy CT algorithm in reducing statistical noise in multi-energy CT imaging. Phys Med Biol 2021; 67. [PMID: 34937002 DOI: 10.1088/1361-6560/ac459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Multi-energy spectral CT has a broader range of applications with the recent development of photon-counting detectors. However, the photons counted in each energy bin decrease when the number of energy bins increases, which causes a higher statistical noise level of the CT image. In this work, we propose a novel iterative dynamic dual-energy CT algorithm to reduce the statistical noise. In the proposed algorithm, the multi-energy projections are estimated from the dynamic dual-energy CT data during the iterative process. The proposed algorithm is verified on sufficient numerical simulations and a laboratory two-energy-threshold PCD system. By applying the same reconstruction algorithm, the dynamic dual-energy CT's final reconstruction results have a much lower statistical noise level than the conventional multi-energy CT. Moreover, based on the analysis of the simulation results, we explain why the dynamic dual-energy CT has a lower statistical noise level than the conventional multi-energy CT. The reason is that: the statistical noise level of multi-energy projection estimated with the proposed algorithm is much lower than that of the conventional multi-energy CT, which leads to less statistical noise of the dynamic dual-energy CT imaging.
Collapse
Affiliation(s)
- Yidi Yao
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Hai Dian Qu, Beijing, 100084, CHINA
| | - Liang Li
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Hai Dian Qu, Beijing, 100084, CHINA
| | - Zhiqiang Chen
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Hai Dian Qu, Beijing, 100084, CHINA
| |
Collapse
|
7
|
Wu W, Hu D, Niu C, Broeke LV, Butler APH, Cao P, Atlas J, Chernoglazov A, Vardhanabhuti V, Wang G. Deep learning based spectral CT imaging. Neural Netw 2021; 144:342-358. [PMID: 34560584 DOI: 10.1016/j.neunet.2021.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Spectral computed tomography (CT) has attracted much attention in radiation dose reduction, metal artifacts removal, tissue quantification and material discrimination. The x-ray energy spectrum is divided into several bins, each energy-bin-specific projection has a low signal-noise-ratio (SNR) than the current-integrating counterpart, which makes image reconstruction a unique challenge. Traditional wisdom is to use prior knowledge based iterative methods. However, this kind of methods demands a great computational cost. Inspired by deep learning, here we first develop a deep learning based reconstruction method; i.e., U-net with Lpp-norm, Total variation, Residual learning, and Anisotropic adaption (ULTRA). Specifically, we emphasize the various multi-scale feature fusion and multichannel filtering enhancement with a denser connection encoding architecture for residual learning and feature fusion. To address the image deblurring problem associated with the L22- loss, we propose a general Lpp-loss, p>0. Furthermore, the images from different energy bins share similar structures of the same object, the regularization characterizing correlations of different energy bins is incorporated into the Lpp- loss function, which helps unify the deep learning based methods with traditional compressed sensing based methods. Finally, the anisotropically weighted total variation is employed to characterize the sparsity in the spatial-spectral domain to regularize the proposed network In particular, we validate our ULTRA networks on three large-scale spectral CT datasets, and obtain excellent results relative to the competing algorithms. In conclusion, our quantitative and qualitative results in numerical simulation and preclinical experiments demonstrate that our proposed approach is accurate, efficient and robust for high-quality spectral CT image reconstruction.
Collapse
Affiliation(s)
- Weiwen Wu
- Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China; Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, School of Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Dianlin Hu
- The Laboratory of Image Science and Technology, Southeast University, Nanjing, People's Republic of China
| | - Chuang Niu
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, School of Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Lieza Vanden Broeke
- Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | | | - Peng Cao
- Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - James Atlas
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | | | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China.
| | - Ge Wang
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, School of Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
8
|
Cueva E, Meaney A, Siltanen S, Ehrhardt MJ. Synergistic multi-spectral CT reconstruction with directional total variation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200198. [PMID: 34218669 DOI: 10.1098/rsta.2020.0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
This work considers synergistic multi-spectral CT reconstruction where information from all available energy channels is combined to improve the reconstruction of each individual channel. We propose to fuse these available data (represented by a single sinogram) to obtain a polyenergetic image which keeps structural information shared by the energy channels with increased signal-to-noise ratio. This new image is used as prior information during a channel-by-channel minimization process through the directional total variation. We analyse the use of directional total variation within variational regularization and iterative regularization. Our numerical results on simulated and experimental data show improvements in terms of image quality and in computational speed. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Evelyn Cueva
- Research Center on Mathematical Modeling (MODEMAT), Escuela Politécnica Nacional, Quito, Ecuador
| | - Alexander Meaney
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Samuli Siltanen
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
9
|
Wang Y, Zhang W, Cai A, Liang N, Wang Z, Wang L, Zheng Z, Li L, Yan B. Multi-segment spectral reconstruction via zero-value set prior. Phys Med Biol 2021; 66. [PMID: 34384055 DOI: 10.1088/1361-6560/ac1d20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/12/2021] [Indexed: 11/11/2022]
Abstract
Most scanning schemes of multi-energy computed tomography (MECT) require multiple sets of full-scan measurements under different x-ray spectra, which limits the application of MECT with incomplete scan. To handle this problem, a flexible MECT scanning strategy is proposed in this paper, which divides one half scan into three curves. Also, a novel MECT reconstruction algorithm is developed to relax the requirement of data acquisition of MECT. For MECT, gradient images of CT images at different energies ideally share the same position of zero-value set (Pos-OS) for the same object. Based on this observation, the characteristics of limited-angle artifacts is first explored, and it is found that the limited-angle artifacts in the image domain are closely related to the angle trajectory of the scan. Inspired by this discovery, the Pos-OS of the gradient image from the fusion CT image is extracted, and it is incorporated as prior knowledge into the TV minimization model in the form of equality constraints. The alternating direction method is exploited to solve the improved optimization model iteratively. Based on this, the proposed algorithm is derived to eliminate the limited angle artifacts in the image domain.The experimental results show that the proposed method achieves higher reconstruction quality under the designed scanning configuration than other methods in the literature.
Collapse
Affiliation(s)
- Yizhong Wang
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, Henan, CHINA
| | - Wenkun Zhang
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, CHINA
| | - Ailong Cai
- Information science, National digital switching center, Science Ave. Num. 62, Zhengzhou City, Prov. Henan, Zhengzhou, Henan, 450000, CHINA
| | - Ningning Liang
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, CHINA
| | - Zhe Wang
- Chinese Academy of Sciences, Beijing, 100864, CHINA
| | - Linyuan Wang
- Information science, National digital switching center, Zhengzhou, Henan, CHINA
| | - Zhizhong Zheng
- Information science, National digital switching center, Zhengzhou, Henan, CHINA
| | - Lei Li
- National Digital Switching System Engineering and Technological Research Center, Zhengzhou, Henan, CHINA
| | - Bin Yan
- Information science, National digital switching center, Zhengzhou, Henan, CHINA
| |
Collapse
|
10
|
Wu W, Chen P, Wang S, Vardhanabhuti V, Liu F, Yu H. Image-domain Material Decomposition for Spectral CT using a Generalized Dictionary Learning. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:537-547. [PMID: 34222737 PMCID: PMC8248524 DOI: 10.1109/trpms.2020.2997880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The spectral computed tomography (CT) has huge advantages by providing accurate material information. Unfortunately, due to the instability or overdetermination of material decomposition model, the accuracy of material decomposition can be compromised in practice. Very recently, the dictionary learning based image-domain material decomposition (DLIMD) can obtain high accuracy for material decompositions from reconstructed spectral CT images. This method can explore the correlation of material components to some extent by training a unified dictionary from all material images. In addition, the dictionary learning based prior as a penalty is applied on material components independently, and many parameters would be carefully elaborated in practice. Because the concentration of contrast agent in clinical applications is low, it can result in data inconsistency for dictionary based representation during the iteration process. To avoid the aforementioned limitations and further improve the accuracy of materials, we first construct a generalized dictionary learning based image-domain material decomposition (GDLIMD) model. Then, the material tensor image is unfolded along the mode-1 to enhance the correlation of different materials. Finally, to avoid the data inconsistency of low iodine contrast, a normalization strategy is employed. Both physical phantom and tissue-synthetic phantom experiments demonstrate the proposed GDLIMD method outperforms the DLIMD and direct inversion (DI) methods.
Collapse
Affiliation(s)
- Weiwen Wu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, 999077, China
| | - Peijun Chen
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Shaoyu Wang
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, 999077, China
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
11
|
Arridge SR, Ehrhardt MJ, Thielemans K. (An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200205. [PMID: 33966461 DOI: 10.1098/rsta.2020.0205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Imaging is omnipresent in modern society with imaging devices based on a zoo of physical principles, probing a specimen across different wavelengths, energies and time. Recent years have seen a change in the imaging landscape with more and more imaging devices combining that which previously was used separately. Motivated by these hardware developments, an ever increasing set of mathematical ideas is appearing regarding how data from different imaging modalities or channels can be synergistically combined in the image reconstruction process, exploiting structural and/or functional correlations between the multiple images. Here we review these developments, give pointers to important challenges and provide an outlook as to how the field may develop in the forthcoming years. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.
Collapse
Affiliation(s)
- Simon R Arridge
- Department of Computer Science, University College London, London, UK
| | - Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, Bath, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
| |
Collapse
|
12
|
Abstract
The introduction of photon-counting detectors is expected to be the next major breakthrough in clinical x-ray computed tomography (CT). During the last decade, there has been considerable research activity in the field of photon-counting CT, in terms of both hardware development and theoretical understanding of the factors affecting image quality. In this article, we review the recent progress in this field with the intent of highlighting the relationship between detector design considerations and the resulting image quality. We discuss detector design choices such as converter material, pixel size, and readout electronics design, and then elucidate their impact on detector performance in terms of dose efficiency, spatial resolution, and energy resolution. Furthermore, we give an overview of data processing, reconstruction methods and metrics of imaging performance; outline clinical applications; and discuss potential future developments.
Collapse
Affiliation(s)
- Mats Danielsson
- Department of Physics, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden. Prismatic Sensors AB, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Singh R, Wu W, Wang G, Kalra MK. Artificial intelligence in image reconstruction: The change is here. Phys Med 2020; 79:113-125. [DOI: 10.1016/j.ejmp.2020.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
|
14
|
Zhang W, Liang N, Wang Z, Cai A, Wang L, Tang C, Zheng Z, Li L, Yan B, Hu G. Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization. Quant Imaging Med Surg 2020; 10:1940-1960. [PMID: 33014727 DOI: 10.21037/qims-20-594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Multi-energy computed tomography (MECT) based on a photon-counting detector is an emerging imaging modality that collects projections at several energy bins with a single scan. However, the limited number of photons collected into the divided, narrow energy bins results in high quantum noise levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels while retaining image details. Methods A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity among interchannel images and spatial sparsity in single-channel images. Similar patches were initially extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the compressibility of gradient image. A new MECT reconstruction model was established by simultaneously incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization method was utilized to solve the reconstruction model based on a flexible framework. Results The proposed method was applied to the digital phantom and real mouse data to assess its feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging and demonstrated the ability of the proposed method in noise suppression while preserving image details, not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving the best intuitive reconstruction and decomposition results among all compared methods. They reduced the root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively. Conclusions In this study, we proposed a reconstruction method for photon counting detector-based MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression and detail preservation in the digital phantom and real mouse data were validated by the qualitative and quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the proposed method in MECT reconstruction.
Collapse
Affiliation(s)
- Wenkun Zhang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ningning Liang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Zhe Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Ailong Cai
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Linyuan Wang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Chao Tang
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Zhizhong Zheng
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Lei Li
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Guoen Hu
- Key Laboratory of Imaging and Intelligent Processing of Henan Province, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| |
Collapse
|
15
|
Shi Y, Gao Y, Zhang Y, Sun J, Mou X, Liang Z. Spectral CT Reconstruction via Low-Rank Representation and Region-Specific Texture Preserving Markov Random Field Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2996-3007. [PMID: 32217474 PMCID: PMC7529661 DOI: 10.1109/tmi.2020.2983414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photon-counting spectral computed tomography (CT) is capable of material characterization and can improve diagnostic performance over traditional clinical CT. However, it suffers from photon count starving for each individual energy channel which may cause severe artifacts in the reconstructed images. Furthermore, since the images in different energy channels describe the same object, there are high correlations among different channels. To make full use of the inter-channel correlations and minimize the count starving effect while maintaining clinically meaningful texture information, this paper combines a region-specific texture model with a low-rank correlation descriptor as an a priori regularization to explore a superior texture preserving Bayesian reconstruction of spectral CT. Specifically, the inter-channel correlations are characterized by the low-rank representation, and the inner-channel regional textures are modeled by a texture preserving Markov random field. In other words, this paper integrates the spectral and spatial information into a unified Bayesian reconstruction framework. The widely-used Split-Bregman algorithm is employed to minimize the objective function because of the non-differentiable property of the low-rank representation. To evaluate the tissue texture preserving performance of the proposed method for each channel, three references are built for comparison: one is the traditional CT image from energy integration detection. The second one is spectral images from dual-energy CT. The third one is individual channels images from custom-made photon-counting spectral CT. As expected, the proposed method produced promising results in terms of not only preserving texture features but also suppressing image noise in each channel, comparing to existing methods of total variation (TV), low-rank TV and tensor dictionary learning, by both visual inspection and quantitative indexes of root mean square error, peak signal to noise ratio, structural similarity and feature similarity.
Collapse
|
16
|
Zeng D, Yao L, Ge Y, Li S, Xie Q, Zhang H, Bian Z, Zhao Q, Li Y, Xu Z, Meng D, Ma J. Full-Spectrum-Knowledge-Aware Tensor Model for Energy-Resolved CT Iterative Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2831-2843. [PMID: 32112677 DOI: 10.1109/tmi.2020.2976692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Energy-resolved computed tomography (ErCT) with a photon counting detector concurrently produces multiple CT images corresponding to different photon energy ranges. It has the potential to generate energy-dependent images with improved contrast-to-noise ratio and sufficient material-specific information. Since the number of detected photons in one energy bin in ErCT is smaller than that in conventional energy-integrating CT (EiCT), ErCT images are inherently more noisy than EiCT images, which leads to increased noise and bias in the subsequent material estimation. In this work, we first deeply analyze the intrinsic tensor properties of two-dimensional (2D) ErCT images acquired in different energy bins and then present a F ull- S pectrum-knowledge-aware Tensor analysis and processing (FSTensor) method for ErCT reconstruction to suppress noise-induced artifacts to obtain high-quality ErCT images and high-accuracy material images. The presented method is based on three considerations: (1) 2D ErCT images obtained in different energy bins can be treated as a 3-order tensor with three modes, i.e., width, height and energy bin, and a rich global correlation exists among the three modes, which can be characterized by tensor decomposition. (2) There is a locally piecewise smooth property in the 3-order ErCT images, and it can be captured by a tensor total variation regularization. (3) The images from the full spectrum are much better than the ErCT images with respect to noise variance and structural details and serve as external information to improve the reconstruction performance. We then develop an alternating direction method of multipliers algorithm to numerically solve the presented FSTensor method. We further utilize a genetic algorithm to tackle the parameter selection in ErCT reconstruction, instead of manually determining parameters. Simulation, preclinical and synthesized clinical ErCT results demonstrate that the presented FSTensor method leads to significant improvements over the filtered back-projection, robust principal component analysis, tensor-based dictionary learning and low-rank tensor decomposition with spatial-temporal total variation methods.
Collapse
|
17
|
Kim Y, Kudo H. Nonlocal Total Variation Using the First and Second Order Derivatives and Its Application to CT Image Reconstruction. SENSORS 2020; 20:s20123494. [PMID: 32575760 PMCID: PMC7349404 DOI: 10.3390/s20123494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
We propose a new class of nonlocal Total Variation (TV), in which the first derivative and the second derivative are mixed. Since most existing TV considers only the first-order derivative, it suffers from problems such as staircase artifacts and loss in smooth intensity changes for textures and low-contrast objects, which is a major limitation in improving image quality. The proposed nonlocal TV combines the first and second order derivatives to preserve smooth intensity changes well. Furthermore, to accelerate the iterative algorithm to minimize the cost function using the proposed nonlocal TV, we propose a proximal splitting based on Passty’s framework. We demonstrate that the proposed nonlocal TV method achieves adequate image quality both in sparse-view CT and low-dose CT, through simulation studies using a brain CT image with a very narrow contrast range for which it is rather difficult to preserve smooth intensity changes.
Collapse
|
18
|
Li Z, Ravishankar S, Long Y, Fessler JA. DECT-MULTRA: Dual-Energy CT Image Decomposition With Learned Mixed Material Models and Efficient Clustering. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1223-1234. [PMID: 31603815 PMCID: PMC7263375 DOI: 10.1109/tmi.2019.2946177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dual-energy computed tomography (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Image-domain decomposition operates directly on CT images using linear matrix inversion, but the decomposed material images can be severely degraded by noise and artifacts. This paper proposes a new method dubbed DECT-MULTRA for image-domain DECT material decomposition that combines conventional penalized weighted-least squares (PWLS) estimation with regularization based on a mixed union of learned transforms (MULTRA) model. Our proposed approach pre-learns a union of common-material sparsifying transforms from patches extracted from all the basis materials, and a union of cross-material sparsifying transforms from multi-material patches. The common-material transforms capture the common properties among different material images, while the cross-material transforms capture the cross-dependencies. The proposed PWLS formulation is optimized efficiently by alternating between an image update step and a sparse coding and clustering step, with both of these steps having closed-form solutions. The effectiveness of our method is validated with both XCAT phantom and clinical head data. The results demonstrate that our proposed method provides superior material image quality and decomposition accuracy compared to other competing methods.
Collapse
|
19
|
Niu S, Lu S, Zhang Y, Huang X, Zhong Y, Yu G, Wang J. Statistical image-based material decomposition for triple-energy computed tomography using total variation regularization. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:751-771. [PMID: 32597827 DOI: 10.3233/xst-200672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Triple-energy computed tomography (TECT) can obtain x-ray attenuation measurements at three energy spectra, thereby allowing identification of different material compositions with same or very similar attenuation coefficients. This ability is known as material decomposition, which can decompose TECT images into different basis material image. However, the basis material image would be severely degraded when material decomposition is directly performed on the noisy TECT measurements using a matrix inversion method. OBJECTIVE To achieve high quality basis material image, we present a statistical image-based material decomposition method for TECT, which uses the penalized weighted least-squares (PWLS) criteria with total variation (TV) regularization (PWLS-TV). METHODS The weighted least-squares term involves the noise statistical properties of the material decomposition process, and the TV regularization penalizes differences between local neighboring pixels in a decomposed image, thereby contributing to improving the quality of the basis material image. Subsequently, an alternating optimization method is used to minimize the objective function. RESULTS The performance of PWLS-TV is quantitatively evaluated using digital and mouse thorax phantoms. The experimental results show that PWLS-TV material decomposition method can greatly improve the quality of decomposed basis material image compared to the quality of images obtained using the competing methods in terms of suppressing noise and preserving edge and fine structure details. CONCLUSIONS The PWLS-TV method can simultaneously perform noise reduction and material decomposition in one iterative step, and it results in a considerable improvement of basis material image quality.
Collapse
Affiliation(s)
- Shanzhou Niu
- Jiangxi Key Laboratory of Numerical Simulation Technology, School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaohui Lu
- Jiangxi Key Laboratory of Numerical Simulation Technology, School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - You Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaokun Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaohang Yu
- School of Science, Hangzhou Dianzi University, Hangzhou, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Abstract
Spectral computed tomography (CT) has a great potential in material identification and decomposition. To achieve high-quality material composition images and further suppress the x-ray beam hardening artifacts, we first propose a one-step material reconstruction model based on Taylor's first-order expansion. Then, we develop a basic material reconstruction method named material simultaneous algebraic reconstruction technique (MSART). Considering the local similarity of each material image, we incorporate a powerful block matching frame (BMF) into the material reconstruction (MR) model and generate a BMF based MR (BMFMR) method. Because the BMFMR model contains the L 0-norm problem, we adopt a split-Bregman method for optimization. The numerical simulation and physical phantom experiment results validate the correctness of the material reconstruction algorithms and demonstrate that the BMF regularization outperforms the total variation and no-local mean regularizations.
Collapse
Affiliation(s)
- Weiwen Wu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People’s Republic of China
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
- The contributions of W Wu and Q Wang are equal
| | - Qian Wang
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
- The contributions of W Wu and Q Wang are equal
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People’s Republic of China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Yining Zhu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| |
Collapse
|
21
|
Gao Y, Shi Y, Cao W, Zhang S, Liang Z. Energy enhanced tissue texture in spectral computed tomography for lesion classification. Vis Comput Ind Biomed Art 2019; 2:16. [PMID: 32226923 PMCID: PMC7089716 DOI: 10.1186/s42492-019-0028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Tissue texture reflects the spatial distribution of contrasts of image voxel gray levels, i.e., the tissue heterogeneity, and has been recognized as important biomarkers in various clinical tasks. Spectral computed tomography (CT) is believed to be able to enrich tissue texture by providing different voxel contrast images using different X-ray energies. Therefore, this paper aims to address two related issues for clinical usage of spectral CT, especially the photon counting CT (PCCT): (1) texture enhancement by spectral CT image reconstruction, and (2) spectral energy enriched tissue texture for improved lesion classification. For issue (1), we recently proposed a tissue-specific texture prior in addition to low rank prior for the individual energy-channel low-count image reconstruction problems in PCCT under the Bayesian theory. Reconstruction results showed the proposed method outperforms existing methods of total variation (TV), low-rank TV and tensor dictionary learning in terms of not only preserving texture features but also suppressing image noise. For issue (2), this paper will investigate three models to incorporate the enriched texture by PCCT in accordance with three types of inputs: one is the spectral images, another is the co-occurrence matrices (CMs) extracted from the spectral images, and the third one is the Haralick features (HF) extracted from the CMs. Studies were performed on simulated photon counting data by introducing attenuation-energy response curve to the traditional CT images from energy integration detectors. Classification results showed the spectral CT enriched texture model can improve the area under the receiver operating characteristic curve (AUC) score by 7.3%, 0.42% and 3.0% for the spectral images, CMs and HFs respectively on the five-energy spectral data over the original single energy data only. The CM- and HF-inputs can achieve the best AUC of 0.934 and 0.927. This texture themed study shows the insight that incorporating clinical important prior information, e.g., tissue texture in this paper, into the medical imaging, such as the upstream image reconstruction, the downstream diagnosis, and so on, can benefit the clinical tasks.
Collapse
Affiliation(s)
- Yongfeng Gao
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Yongyi Shi
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA.,2Institute of Image Processing and Pattern Recognition, Xi'an Jiaotong University, Xi'an, 710049 Shanxi China
| | - Weiguo Cao
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Shu Zhang
- 1Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Zhengrong Liang
- 3Departments of Radiology, Biomedical Engineering, Computer Science, and Electrical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
22
|
Li M, Wang Z, Xu Q, Zhang Z, Cheng Z, Liu S, Liu B, Wei C, Wei L. A study on noise reduction for dual-energy CT material decomposition with autoencoder. RADIATION DETECTION TECHNOLOGY AND METHODS 2019. [DOI: 10.1007/s41605-019-0122-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Wu W, Liu F, Zhang Y, Wang Q, Yu H. Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1079-1093. [PMID: 30371357 PMCID: PMC6536296 DOI: 10.1109/tmi.2018.2878226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Spectral computed tomography (CT) reconstructs material-dependent attenuation images from the projections of multiple narrow energy windows, which is meaningful for material identification and decomposition. Unfortunately, the multi-energy projection datasets usually have lower signal-noise ratios (SNR). Very recently, a spatial-spectral cube matching frame (SSCMF) was proposed to explore the non-local spatial-spectral similarities for spectral CT. This method constructs a group by clustering up a series of non-local spatial-spectral cubes. The small size of spatial patches for such a group makes the SSCMF fail to fully encode the sparsity and low-rank properties. The hard-thresholding and collaboration filtering in the SSCMF also cause difficulty in recovering the image features and spatial edges. While all the steps are operated on 4-D group, the huge computational cost and memory load might not be affordable in practice. To avoid the above limitations and further improve the image quality, we first formulate a non-local cube-based tensor instead of group to encode the sparsity and low-rank properties. Then, as a new regularizer, the Kronecker-basis-representation tensor factorization is employed into a basic spectral CT reconstruction model to enhance the capability of image feature extraction and spatial edge preservation, generating a non-local low-rank cube-based tensor factorization (NLCTF) method. Finally, the split-Bregman method is adopted to solve the NLCTF model. Both numerical simulations and preclinical mouse studies are performed to validate and evaluate the NLCTF algorithm. The results show that the NLCTF method outperforms the other state-of-the-art competing algorithms.
Collapse
|
24
|
Niu S, Zhang Y, Zhong Y, Liu G, Lu S, Zhang X, Hu S, Wang T, Yu G, Wang J. Iterative reconstruction for photon-counting CT using prior image constrained total generalized variation. Comput Biol Med 2018; 103:167-182. [PMID: 30384175 DOI: 10.1016/j.compbiomed.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
In this paper, we present an iterative reconstruction for photon-counting CT using prior image constrained total generalized variation (PICTGV). This work aims to exploit structural correlation in the energy domain to reduce image noise in photon-counting CT with narrow energy bins. This is motived by the fact that the similarity between high-quality full-spectrum image and target image is an important prior knowledge for photon-counting CT reconstruction. The PICTGV method is implemented using a splitting-based fast iterative shrinkage-threshold algorithm (FISTA). Evaluations conducted with simulated and real photon-counting CT data demonstrate that PICTGV method outperforms the existing prior image constrained compressed sensing (PICCS) method in terms of noise reduction, artifact suppression and resolution preservation. In the simulated head data study, the average relative root mean squared error is reduced from 2.3% in PICCS method to 1.2% in PICTGV method, and the average universal quality index increases from 0.67 in PICCS method to 0.76 in PICTGV method. The results show that the present PICTGV method improves the performance of the PICCS method for photon-counting CT reconstruction with narrow energy bins.
Collapse
Affiliation(s)
- Shanzhou Niu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA; School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China
| | - You Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Guoliang Liu
- School of Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Shaohui Lu
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Xile Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100083, China
| | - Shengzhou Hu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China
| | - Tinghua Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China
| | - Gaohang Yu
- School of Science, Hangzhou Dianzi University, Hangzhou, 310000, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
25
|
Wu W, Zhang Y, Wang Q, Liu F, Luo F, Yu H. Spatial-Spectral Cube Matching Frame for Spectral CT Reconstruction. INVERSE PROBLEMS 2018; 34:104003. [PMID: 30906099 PMCID: PMC6424516 DOI: 10.1088/1361-6420/aad67b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Spectral computed tomography (CT) reconstructs the same scanned object from projections of multiple narrow energy windows, and it can be used for material identification and decomposition. However, the multi-energy projection dataset has a lower signal-noise-ratio (SNR), resulting in poor reconstructed image quality. To address this thorny problem, we develop a spectral CT reconstruction method, namely spatial-spectral cube matching frame (SSCMF). This method is inspired by the following three facts: i) human body usually consists of two or three basic materials implying that the reconstructed spectral images have a strong sparsity; ii) the same basic material component in a single channel image has similar intensity and structures in local regions. Different material components within the same energy channel share similar structural information; iii) multi-energy projection datasets are collected from the subject by using different narrow energy windows, which means images reconstructed from different energy-channels share similar structures. To explore those information, we first establish a tensor cube matching frame (CMF) for a BM4D denoising procedure. Then, as a new regularizer, the CMF is introduced into a basic spectral CT reconstruction model, generating the SSCMF method. Because the SSCMF model contains an L0-norm minimization of 4D transform coefficients, an effective strategy is employed for optimization. Both numerical simulations and realistic preclinical mouse studies are performed. The results show that the SSCMF method outperforms the state-of-the-art algorithms, including the simultaneous algebraic reconstruction technique, total variation minimization, total variation plus low rank, and tensor dictionary learning.
Collapse
Affiliation(s)
- Weiwen Wu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yanbo Zhang
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Qian Wang
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Fulin Luo
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
26
|
Chen B, Xiang K, Gong Z, Wang J, Tan S. Statistical Iterative CBCT Reconstruction Based on Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1511-1521. [PMID: 29870378 PMCID: PMC6002810 DOI: 10.1109/tmi.2018.2829896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cone-beam computed tomography (CBCT) plays an important role in radiation therapy. Statistical iterative reconstruction (SIR) algorithms with specially designed penalty terms provide good performance for low-dose CBCT imaging. Among others, the total variation (TV) penalty is the current state-of-the-art in removing noises and preserving edges, but one of its well-known limitations is its staircase effect. Recently, various penalty terms with higher order differential operators were proposed to replace the TV penalty to avoid the staircase effect, at the cost of slightly blurring object edges. We developed a novel SIR algorithm using a neural network for CBCT reconstruction. We used a data-driven method to learn the "potential regularization term" rather than design a penalty term manually. This approach converts the problem of designing a penalty term in the traditional statistical iterative framework to designing and training a suitable neural network for CBCT reconstruction. We proposed using transfer learning to overcome the data deficiency problem and an iterative deblurring approach specially designed for the CBCT iterative reconstruction process during which the noise level and resolution of the reconstructed images may change. Through experiments conducted on two physical phantoms, two simulation digital phantoms, and patient data, we demonstrated the excellent performance of the proposed network-based SIR for CBCT reconstruction, both visually and quantitatively. Our proposed method can overcome the staircase effect, preserve both edges and regions with smooth intensity transition, and provide reconstruction results at high resolution and low noise level.
Collapse
|