1
|
Shen Y, Zhu Q, Chen Z, Wu J, Chen B, Dai E, Pan W. Lossy Mode Resonance Sensors Based on Anisotropic Few-Layer Black Phosphorus. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:736. [PMID: 38727330 PMCID: PMC11085111 DOI: 10.3390/nano14090736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Lossy mode resonance (LMR) sensors offer a promising avenue to surpass the constraints of conventional surface plasmon resonance (SPR) sensors by delivering enhanced label-free detection capabilities. A notable edge of LMR over SPR is its excitation potential by both transverse electric (TE) and transverse magnetic (TM) polarized light. Yet this merit remains underexplored due to challenges to achieving high sensing performance under both TM and TE polarization within a singular LMR model. This study introduces a theoretical model for an LMR prism refractive index sensor based on a MgF2-few layer black phosphorus-MgF2 configuration, which can achieve angular sensitivity nearing 90° refractive index unit-1 (RIU-1) for both polarizations. Leveraging the distinct anisotropic nature of black phosphorus, the figure of merit (FOM) values along its two principal crystal axes (zigzag and armchair) show great difference, achieving an impressive FOM of 1.178 × 106 RIU-1 along the zigzag direction under TE polarized light and 1.231 × 104 RIU-1 along the armchair direction under TM polarized light. We also provide an analysis of the electric field distribution for each configuration at its respective resonant conditions. The proposed structure paves the way for innovative applications of anisotropic-material-based LMR sensors in various applications.
Collapse
|
2
|
Mamori H, Al Shami A, Attou L, El Kenz A, Benyoussef A, Taleb A, El Fatimy A, Mounkachi O. Layer engineering in optoelectronic and photonic properties of single and few layer phosphorene using first-principles calculations. RSC Adv 2024; 14:608-615. [PMID: 38173582 PMCID: PMC10759304 DOI: 10.1039/d3ra06628b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Developing devices for optoelectronic and photonic applications-based nanomaterials has been one of the most critical challenges in the last decade. In this work, we use first-principles density functional theory combined with non-equilibrium Green's function to highlight for the first time the sensitivity of optoelectronic and photonic properties toward the exfoliation process. All the studied structures were relaxed and their relevant phonon modes confirm the high structural stability. The obtained phosphorene layers remained semiconducting with a direct band gap like the respective bulk structure with 10 layers. We also examined the effects of the thickness on the electron-hole interaction by calculating absorption energy combined with electron relaxation lifetimes. Additionally, we explore the optoelectronic properties, which can also be influenced by the exfoliation. Finally, we found that the current-voltage (I-V) characteristic shows higher sensitivity toward the bulk structure than the other 2D forms of phosphorene structures, meaning that the Schottky barrier at the interface of the bulk phosphorene is much lower than mono, and few layer phosphorene.
Collapse
Affiliation(s)
- Habiba Mamori
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
| | - Ahmed Al Shami
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
| | - Loubaba Attou
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
- AMEEC Team, LERMA, College of Engineering and Architecture, International University of Rabat Parc Technopolis Rocade de Rabat-Salé 11100 Morocco
| | - Abdallah El Kenz
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
| | - Abdelilah Benyoussef
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
- Hassan II Academy of Sciences and Techniques Rabat Morocco
| | - Abdelhafed Taleb
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
- Sorbonne University 4 Place Jussieu 75231 - Paris France
| | - A El Fatimy
- Institute of Applied Physics, Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Omar Mounkachi
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
- College of Computing, Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Ben Guerir 43150 Morocco
| |
Collapse
|
3
|
Li W, Li H, Khan K, Liu X, Wang H, Lin Y, Zhang L, Tareen AK, Wageh S, Al-Ghamdi AA, Teng D, Zhang H, Shi Z. Infrared Light Emission Devices Based on Two-Dimensional Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172996. [PMID: 36080035 PMCID: PMC9457538 DOI: 10.3390/nano12172996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 05/25/2023]
Abstract
Two-dimensional (2D) materials have garnered considerable attention due to their advantageous properties, including tunable bandgap, prominent carrier mobility, tunable response and absorption spectral band, and so forth. The above-mentioned properties ensure that 2D materials hold great promise for various high-performance infrared (IR) applications, such as night vision, remote sensing, surveillance, target acquisition, optical communication, etc. Thus, it is of great significance to acquire better insight into IR applications based on 2D materials. In this review, we summarize the recent progress of 2D materials in IR light emission device applications. First, we introduce the background and motivation of the review, then the 2D materials suitable for IR light emission are presented, followed by a comprehensive review of 2D-material-based spontaneous emission and laser applications. Finally, further development directions and challenges are summarized. We believe that milestone investigations of 2D-material-based IR light emission applications will emerge soon, which are beneficial for 2D-material-based nano-device commercialization.
Collapse
Affiliation(s)
- Wenyi Li
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Hui Li
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Karim Khan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaosong Liu
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Hui Wang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ayesha Khan Tareen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed A. Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Daoxiang Teng
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| |
Collapse
|
4
|
Jakhar M, Kumar A, Ahluwalia PK, Tankeshwar K, Pandey R. Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2221. [PMID: 35329672 PMCID: PMC8954018 DOI: 10.3390/ma15062221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in high-end computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall water-splitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts.
Collapse
Affiliation(s)
- Mukesh Jakhar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | | | - Kumar Tankeshwar
- Department of Physics and Astrophysics, Central University of Haryana, Mahendragarh 123031, India;
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
5
|
Abstract
Mica nanosheets possess peculiar feature of narrowed bandgap with the decrease of thickness but a conclusive theoretical understanding of the narrowing mechanisms is still under development. In this report, first-principles calculations were carried out to investigate the electronic band structure of mica nanosheets with the deposition of K2CO3. Bulk mica shows an indirect bandgap of 4.90 eV. Mica nanosheets show similar electronic structures to bulk mica with a gradually increased bandgap of 4.44 eV, 4.52 eV and 4.67 eV for 1-layer, 2-layers and 3-layers nanosheets, respectively, which is attributed to the lattice relaxation. K2CO3 is found to have strong affinity towards mica nanosheets. The K2CO3 deposited mica nanosheets showed an increased bandgap with the increase of thickness, consistent with experimental observations. The calculated bandgap of K2CO3 deposited mica for 2-layers and 3-layers nanosheets are 2.60 eV and 2.75 eV, respectively, which are comparable with the corresponding experimental values of 2.5 eV and 3.0 eV. Our theoretical findings support the experimental evidence of surface contamination of mica by K2CO3, and provide new insight into the structure and properties of 2D mica.
Collapse
|
6
|
Habiba M, Abdelilah B, Abdallah EK, Abdelhafed T, Ennaoui A, Khadija EM, Omar M. Enhanced photocatalytic activity of phosphorene under different pH values using density functional theory (DFT). RSC Adv 2021; 11:16004-16014. [PMID: 35481157 PMCID: PMC9030538 DOI: 10.1039/d0ra10246f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Phosphorene, a new two-dimensional material, was investigated theoretically as a promising photocatalyst material. The structural and electronic properties of phosphorene were studied using hybrid functional based HSE approximation. The effect of the adsorbed molecules on the phosphorene surface was studied for various chemical elements, such as water molecule (H2O), hydronium ion (H3O+), hydrogen atom and ion (H/H+), hydroxide molecule (OH), and hydroxide ion (OH−). The potential application of phosphorene as a photocatalyst in vacuum was proved under different pH values. A pH of 8 was found to be the suitable value for clean phosphorene in which the flat band position was corrected for the oxidizing and reducing potentials of phosphorene, but the presence of OH− ions in a basic solution damaged the surface structure and limited the use of phosphorene in photocatalysis caused by the high content (0.25 ML and 0.5 ML) of the adsorbed OH− on the phosphorene surface. The obtained results matched the required parameters of a photocatalyst for water splitting using clean phosphorene surface in neutral solution (pH = 7). Phosphorene, a new two-dimensional material, was investigated theoretically as a promising photocatalyst material.![]()
Collapse
Affiliation(s)
- Mamori Habiba
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco .,Materials and Nanomaterials Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR Rabat Morocco.,PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| | - Benyoussef Abdelilah
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco .,Hassan II Academy of Sciences and Techniques Rabat Morocco
| | - El Kenz Abdallah
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
| | - Taleb Abdelhafed
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris 75005 Paris France.,Sorbonne University 4 Place Jussieu 75231 Paris France
| | - Ahmed Ennaoui
- Scientific Council of IRESEN, the Moroccan Solar Energy Research Institute Ben Guerir Morocco
| | - El Maalam Khadija
- Materials and Nanomaterials Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR Rabat Morocco
| | - Mounkachi Omar
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco .,MSDA, Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Ben Guerir 43150 Morocco
| |
Collapse
|
7
|
Bui HD, Phuong LTT, Yarmohammadi M. On the influence of dilute charged impurity and perpendicular electric field on the electronic phase of phosphorene: Band gap engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/27001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Cupo A, Das PM, Chien CC, Danda G, Kharche N, Tristant A, Drndié M, Meunier V. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties. ACS NANO 2017; 11:7494-7507. [PMID: 28666086 PMCID: PMC5893940 DOI: 10.1021/acsnano.7b04031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.
Collapse
Affiliation(s)
- Andrew Cupo
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Paul Masih Das
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chen-Chi Chien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gopinath Danda
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neerav Kharche
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - amien Tristant
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Marija Drndié
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vincent Meunier
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|