1
|
Sionkowski P, Kruszewska N, Kreitschitz A, Gorb SN, Domino K. Application of Recurrence Plot Analysis to Examine Dynamics of Biological Molecules on the Example of Aggregation of Seed Mucilage Components. ENTROPY (BASEL, SWITZERLAND) 2024; 26:380. [PMID: 38785629 PMCID: PMC11119629 DOI: 10.3390/e26050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
The goal of the research is to describe the aggregation process inside the mucilage produced by plant seeds using molecular dynamics (MD) combined with time series algorithmic analysis based on the recurrence plots. The studied biological molecules model is seed mucilage composed of three main polysaccharides, i.e. pectins, hemicellulose, and cellulose. The modeling of biological molecules is based on the assumption that a classical-quantum passage underlies the aggregation process in the mucilage, resulting from non-covalent interactions, as they affect the macroscopic properties of the system. The applied recurrence plot approach is an important tool for time series analysis and data mining dedicated to analyzing time series data originating from complex, chaotic systems. In the current research, we demonstrated that advanced algorithmic analysis of seed mucilage data can reveal some features of the dynamics of the system, namely temperature-dependent regions with different dynamics of increments of a number of hydrogen bonds and regions of stable oscillation of increments of a number of hydrophobic-polar interactions. Henceforth, we pave the path for automatic data-mining methods for the analysis of biological molecules with the intermediate step of the application of recurrence plot analysis, as the generalization of recurrence plot applications to other (biological molecules) datasets is straightforward.
Collapse
Affiliation(s)
- Piotr Sionkowski
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland; (P.S.); (K.D.)
| | - Natalia Kruszewska
- Group of Modeling of Physicochemical Processes, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Agnieszka Kreitschitz
- Department of Plant Developmental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland;
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany;
| | - Krzysztof Domino
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland; (P.S.); (K.D.)
| |
Collapse
|
2
|
Nilsson LB, Sun F, Kadupitiya JCS, Jadhao V. Molecular Dynamics Simulations of Deformable Viral Capsomers. Viruses 2023; 15:1672. [PMID: 37632014 PMCID: PMC10459744 DOI: 10.3390/v15081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general T=1 icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer-capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer-capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures.
Collapse
Affiliation(s)
| | | | | | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA; (L.B.N.); (F.S.); (J.C.S.K.)
| |
Collapse
|
3
|
Lipska AG, Sieradzan AK, Czaplewski C, Lipińska AD, Ocetkiewicz KM, Proficz J, Czarnul P, Krawczyk H, Liwo A. Long-time scale simulations of virus-like particles from three human-norovirus strains. J Comput Chem 2023; 44:1470-1483. [PMID: 36799410 DOI: 10.1002/jcc.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that sits in the VLP shell) and the P2 subdomain (that protrudes outside) of the major VP1 protein, this resulting in a correlated wagging motion of the P2 subdomains with respect to the VLP surface. The fluctuations of the P2 subdomain were found to be more pronounced and the P2 domain made a greater angle with the normal to the VLP surface for the GII.2 strain, which could explain the inability of this strain to bind the histo-blood group antigens (HBGAs).
Collapse
Affiliation(s)
- Agnieszka G Lipska
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam K Sieradzan
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Krzysztof M Ocetkiewicz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Jerzy Proficz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Paweł Czarnul
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Henryk Krawczyk
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Cieplak M, Mioduszewski Ł, Chwastyk M. Contact-Based Analysis of Aggregation of Intrinsically Disordered Proteins. Methods Mol Biol 2022; 2340:105-120. [PMID: 35167072 DOI: 10.1007/978-1-0716-1546-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We review the contact-based description of aggregation of intrinsically disordered proteins in coarse-grained and all-atom models. We consider polyglutamines and polyalanines at various concentrations of the peptides. We also study associations of two chains of α-synuclein and up to 20 chains of a 12-residue-long segment of protein tau. We demonstrate that the total number of two-chain association events (in an aggregate that comprises at least two chains) provides a useful measure of the propensity to aggregate. This measure is consistent, for instance, with the previously reported mass spectroscopy data. The distribution of the number of association events is given essentially by a power law as a function of the duration of these events. The corresponding exponent depends on the protein and the temperature but not on the concentration of the proteins.
Collapse
Affiliation(s)
- Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| | | | - Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Mioduszewski Ł, Różycki B, Cieplak M. Pseudo-Improper-Dihedral Model for Intrinsically Disordered Proteins. J Chem Theory Comput 2020; 16:4726-4733. [PMID: 32436706 PMCID: PMC7588027 DOI: 10.1021/acs.jctc.0c00338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a new coarse-grained Cα-based protein model with a nonradial multibody pseudo-improper-dihedral potential that is transferable, time-independent, and suitable for molecular dynamics. It captures the nature of backbone and side-chain interactions between amino acid residues by adapting a simple improper dihedral term for a one-bead-per-residue model. It is parameterized for intrinsically disordered proteins and applicable to simulations of such proteins and their assemblies on millisecond time scales.
Collapse
Affiliation(s)
- Łukasz Mioduszewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
6
|
Multiscale modelling and simulation of viruses. Curr Opin Struct Biol 2020; 61:146-152. [PMID: 31991326 DOI: 10.1016/j.sbi.2019.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
In recent years, advances in structural biology, integrative modelling, and simulation approaches have allowed us to gain unprecedented insights into viral structure and dynamics. In this article we survey recent studies utilizing this wealth of structural information to build computational models of partial or complete viruses and to elucidate mechanisms of viral function. Additionally, the close interplay of viral pathogens with host factors - such as cellular and intracellular membranes, receptors, antibodies, and other host proteins - makes accurate models of viral interactions and dynamics essential. As viruses continue to pose severe challenges in prevention and treatment, enhancing our mechanistic understanding of viral infection is vital to enable the development of novel therapeutic strategies.
Collapse
|
7
|
Martínez M, Cooper CD, Poma AB, Guzman HV. Free Energies of the Disassembly of Viral Capsids from a Multiscale Molecular Simulation Approach. J Chem Inf Model 2019; 60:974-981. [DOI: 10.1021/acs.jcim.9b00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Matías Martínez
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - Christopher D. Cooper
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
- Centro Científico Tecnológico de Valparaíso (CCTVal), 2390123 Valparaíso, Chile
| | - Adolfo B. Poma
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Horacio V. Guzman
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Zhao Y, Cieplak M. Stability of structurally entangled protein dimers. Proteins 2018; 86:945-955. [DOI: 10.1002/prot.25526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yani Zhao
- Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46, Warsaw 02668 Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46, Warsaw 02668 Poland
| |
Collapse
|
9
|
Cieplak M, Roos WH. Special Issue on the Physics of Viral Capsids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:290201. [PMID: 29882747 DOI: 10.1088/1361-648x/aacb6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland. Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | | |
Collapse
|