1
|
Shi W, Gupta S, Copos C, Mogilner A. Collective mechanics of small migrating cell groups. Semin Cell Dev Biol 2024; 166:1-12. [PMID: 39647189 DOI: 10.1016/j.semcdb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Migration of adhesive cell groups is a fundamental part of wound healing, development and carcinogenesis. Intense research has been conducted on mechanisms of collective migration of adhesive groups of cells. Here we focus on mechanical and mechanistic lessons from small migrating cell groups. We review forces and locomotory dynamics of two- and three-cell clusters, rotation of cell doublets, self-organization of one-dimensional cell trains, nascent efforts to understand three-dimensional collective migration and border cell clusters in Drosophila embryo.
Collapse
Affiliation(s)
- Wenzheng Shi
- Courant Institute, New York University, New York, NY 10012, USA.
| | - Selena Gupta
- Department of Biology, New York University, New York, NY 10012, USA.
| | - Calina Copos
- Departments of Biology and Mathematics, Northeastern University, Boston, MA 02115, USA.
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
2
|
Suh YJ, Li AT, Pandey M, Nordmann CS, Huang YL, Wu M. Decoding physical principles of cell migration under controlled environment using microfluidics. BIOPHYSICS REVIEWS 2024; 5:031302. [PMID: 39091432 PMCID: PMC11290890 DOI: 10.1063/5.0199161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
Living cells can perform incredible tasks that man-made micro/nano-sized robots have not yet been able to accomplish. One example is that white blood cells can sense and move to the site of pathogen attack within minutes. The robustness and precision of cellular functions have been perfected through billions of years of evolution. In this context, we ask the question whether cells follow a set of physical principles to sense, adapt, and migrate. Microfluidics has emerged as an enabling technology for recreating well-defined cellular environment for cell migration studies, and its ability to follow single cell dynamics allows for the results to be amenable for theoretical modeling. In this review, we focus on the development of microfluidic platforms for recreating cellular biophysical (e.g., mechanical stress) and biochemical (e.g., nutrients and cytokines) environments for cell migration studies in 3D. We summarize the basic principles that cells (including bacteria, algal, and mammalian cells) use to respond to chemical gradients learned from microfluidic systems. We also discuss about novel biological insights gained from studies of cell migration under biophysical cues and the need for further quantitative studies of cell function under well-controlled biophysical environments in the future.
Collapse
Affiliation(s)
- Young Joon Suh
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Alan T. Li
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mrinal Pandey
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Cassidy S. Nordmann
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
3
|
Copos C, Sun YH, Zhu K, Zhang Y, Reid B, Draper B, Lin F, Yue H, Bernadskaya Y, Zhao M, Mogilner A. Galvanotactic directionality of cell groups depends on group size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607794. [PMID: 39185145 PMCID: PMC11343102 DOI: 10.1101/2024.08.13.607794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Motile cells migrate directionally in the electric field in a process known as galvanotaxis, important and under-investigated phenomenon in wound healing and development. We previously reported that individual fish keratocyte cells migrate to the cathode in electric fields, that inhibition of PI3 kinase reverses single cells to the anode, and that large cohesive groups of either unperturbed or PI3K-inhibited cells migrate to the cathode. Here we find that small uninhibited cell groups move to the cathode, while small groups of PI3K-inhibited cells move to the anode. Small groups move faster than large groups, and groups of unperturbed cells move faster than PI3K-inhibited cell groups of comparable sizes. Shapes and sizes of large groups change little when they start migrating, while size and shapes of small groups change significantly, lamellipodia disappear from the rear edges of these groups, and their shapes start to resemble giant single cells. Our results are consistent with the computational model, according to which cells inside and at the edge of the groups pool their propulsive forces to move but interpret directional signals differently. Namely, cells in the group interior are directed to the cathode independently of their chemical state. Meanwhile, the edge cells behave like individual cells: they are directed to the cathode/anode in uninhibited/PI3K-inhibited groups, respectively. As a result, all cells drive uninhibited groups to the cathode, while larger PI3K-inhibited groups are directed by cell majority in the group interior to the cathode, while majority of the edge cells in small groups win the tug-of-war driving these groups to the anode.
Collapse
Affiliation(s)
- Calina Copos
- Department of Biology and Department of Mathematics, Northeastern University, Boston, MA 02115
| | - Yao-Hui Sun
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Kan Zhu
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Brian Reid
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Haicen Yue
- Department of Physics, University of Vermont, Burlington, VT 05405
| | - Yelena Bernadskaya
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| | - Min Zhao
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
4
|
Perez Ipiña E, d’Alessandro J, Ladoux B, Camley BA. Deposited footprints let cells switch between confined, oscillatory, and exploratory migration. Proc Natl Acad Sci U S A 2024; 121:e2318248121. [PMID: 38787878 PMCID: PMC11145245 DOI: 10.1073/pnas.2318248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.
Collapse
Affiliation(s)
- Emiliano Perez Ipiña
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | | | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013Paris, France
| | - Brian A. Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
5
|
Nwogbaga I, Kim AH, Camley BA. Physical limits on galvanotaxis. Phys Rev E 2023; 108:064411. [PMID: 38243498 DOI: 10.1103/physreve.108.064411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2023] [Indexed: 01/21/2024]
Abstract
Eukaryotic cells can polarize and migrate in response to electric fields via "galvanotaxis," which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (∼100) highly polarized sensors or many (∼10^{4}) sensors with an ∼6-10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - A Hyun Kim
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
6
|
Badvaram I, Camley BA. Physical limits to membrane curvature sensing by a single protein. Phys Rev E 2023; 108:064407. [PMID: 38243534 DOI: 10.1103/physreve.108.064407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/11/2023] [Indexed: 01/21/2024]
Abstract
Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal fluctuations of the membrane, leading to discrepancies between the bead's curvature and the local membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus, membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this dependence is limited by the fluctuations in membrane height and density.
Collapse
Affiliation(s)
- Indrajit Badvaram
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Bernoff AJ, Jilkine A, Navarro Hernández A, Lindsay AE. Single-cell directional sensing from just a few receptor binding events. Biophys J 2023; 122:3108-3116. [PMID: 37355773 PMCID: PMC10432224 DOI: 10.1016/j.bpj.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Identifying the directionality of signaling sources from noisy input to membrane receptors is an essential task performed by many cell types. A variety of models have been proposed to explain directional sensing in cells. However, many of these require significant computational and memory capacities for the cell. We propose and analyze a simple mechanism in which a cell adopts the direction associated with the first few membrane binding events. This model yields an accurate angular estimate to the source long before steady state is reached in biologically relevant scenarios. Our proposed mechanism allows for reliable estimates of the directionality of external signals using temporal information and assumes minimal computational capacities of the cell.
Collapse
Affiliation(s)
- Andrew J Bernoff
- Department of Mathematics, Harvey Mudd College, Claremont, California
| | - Alexandra Jilkine
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, South Bend, Indiana
| | - Adrián Navarro Hernández
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, South Bend, Indiana
| | - Alan E Lindsay
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, South Bend, Indiana.
| |
Collapse
|
8
|
Nikolić V, Echlin M, Aguilar B, Shmulevich I. Computational capabilities of a multicellular reservoir computing system. PLoS One 2023; 18:e0282122. [PMID: 37023084 PMCID: PMC10079015 DOI: 10.1371/journal.pone.0282122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 04/07/2023] Open
Abstract
The capacity of cells to process information is currently used to design cell-based tools for ecological, industrial, and biomedical applications such as detecting dangerous chemicals or for bioremediation. In most applications, individual cells are used as the information processing unit. However, single cell engineering is limited by the necessary molecular complexity and the accompanying metabolic burden of synthetic circuits. To overcome these limitations, synthetic biologists have begun engineering multicellular systems that combine cells with designed subfunctions. To further advance information processing in synthetic multicellular systems, we introduce the application of reservoir computing. Reservoir computers (RCs) approximate a temporal signal processing task via a fixed-rule dynamic network (the reservoir) with a regression-based readout. Importantly, RCs eliminate the need of network rewiring, as different tasks can be approximated with the same reservoir. Previous work has already demonstrated the capacity of single cells, as well as populations of neurons, to act as reservoirs. In this work, we extend reservoir computing in multicellular populations with the widespread mechanism of diffusion-based cell-to-cell signaling. As a proof-of-concept, we simulated a reservoir made of a 3D community of cells communicating via diffusible molecules and used it to approximate a range of binary signal processing tasks, focusing on two benchmark functions-computing median and parity functions from binary input signals. We demonstrate that a diffusion-based multicellular reservoir is a feasible synthetic framework for performing complex temporal computing tasks that provides a computational advantage over single cell reservoirs. We also identified a number of biological properties that can affect the computational performance of these processing systems.
Collapse
Affiliation(s)
- Vladimir Nikolić
- Bioinformatics Graduate Program, The University of British Columbia, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Moriah Echlin
- Institute for Systems Biology, Seattle, WA, United States of America
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA, United States of America
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, WA, United States of America
| |
Collapse
|
9
|
Nwogbaga I, Camley BA. Coupling cell shape and velocity leads to oscillation and circling in keratocyte galvanotaxis. Biophys J 2023; 122:130-142. [PMID: 36397670 PMCID: PMC9822803 DOI: 10.1016/j.bpj.2022.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
During wound healing, fish keratocyte cells undergo galvanotaxis where they follow a wound-induced electric field. In addition to their stereotypical persistent motion, keratocytes can develop circular motion without a field or oscillate while crawling in the field direction. We developed a coarse-grained phenomenological model that captures these keratocyte behaviors. We fit this model to experimental data on keratocyte response to an electric field being turned on. A critical element of our model is a tendency for cells to turn toward their long axis, arising from a coupling between cell shape and velocity, which gives rise to oscillatory and circular motion. Galvanotaxis is influenced not only by the field-dependent responses, but also cell speed and cell shape relaxation rate. When the cell reacts to an electric field being turned on, our model predicts that stiff, slow cells react slowly but follow the signal reliably. Cells that polarize and align to the field at a faster rate react more quickly and follow the signal more reliably. When cells are exposed to a field that switches direction rapidly, cells follow the average of field directions, while if the field is switched more slowly, cells follow a "staircase" pattern. Our study indicated that a simple phenomenological model coupling cell speed and shape is sufficient to reproduce a broad variety of different keratocyte behaviors, ranging from circling to oscillation to galvanotactic response, by only varying a few parameters.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
10
|
The Forces behind Directed Cell Migration. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.
Collapse
|
11
|
Zadeh P, Camley BA. Picking winners in cell-cell collisions: Wetting, speed, and contact. Phys Rev E 2022; 106:054413. [PMID: 36559372 DOI: 10.1103/physreve.106.054413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Groups of eukaryotic cells can coordinate their crawling motion to follow cues more effectively, stay together, or invade new areas. This collective cell migration depends on cell-cell interactions, which are often studied by colliding pairs of cells together. Can the outcome of these collisions be predicted? Recent experiments on trains of colliding epithelial cells suggest that cells with a smaller contact angle to the surface or larger speeds are more likely to maintain their direction ("win") upon collision. When should we expect shape or speed to correlate with the outcome of a collision? To investigate this question, we build a model for two-cell collisions within the phase field framework, which allows for cell shape changes. We can reproduce the observation that cells with high speed and small contact angles are more likely to win with two different assumptions for how cells interact: (1) velocity aligning, in which we hypothesize that cells sense their own velocity and align to it over a finite timescale, and (2) front-front contact repolarization, where cells polarize away from cell-cell contact, akin to contact inhibition of locomotion. Surprisingly, though we simulate collisions between cells with widely varying properties, in each case, the probability of a cell winning is completely captured by a single summary variable: its relative speed (in the velocity-aligning model) or its relative contact angle (in the contact repolarization model). Both models are currently consistent with reported experimental results, but they can be distinguished by varying cell contact angle and speed through orthogonal perturbations.
Collapse
Affiliation(s)
- Pedrom Zadeh
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21210, USA
| | - Brian A Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21210, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Okuda S, Sato K. Polarized interfacial tension induces collective migration of cells, as a cluster, in a 3D tissue. Biophys J 2022; 121:1856-1867. [PMID: 35525240 DOI: 10.1016/j.bpj.2022.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/22/2021] [Accepted: 04/14/2022] [Indexed: 01/01/2023] Open
Abstract
In embryogenesis and cancer invasion, cells collectively migrate as a cluster in 3D tissues. Many studies have elucidated mechanisms of either individual or collective cell migration on 2D substrates; however, it remains unclear how cells collectively migrate as a cluster through 3D tissues. To address this issue, we considered the interfacial tension at cell-cell boundaries expressing cortical actomyosin contractions and cell-cell adhesive interactions. The strength of this tension is polarized; i.e., spatially biased within each cell according to a chemoattractant gradient. Using a 3D vertex model, we performed numerical simulations of multicellular dynamics in 3D space. The simulations revealed that the polarized interfacial tension enables cells to migrate collectively as a cluster through a 3D tissue. In this mechanism, interfacial tension induces unidirectional flow of each cell surface from the front to the rear along the cluster surface. Importantly, this mechanism does not necessarily require convection of cells, i.e., cell rearrangement, within the cluster. Moreover, several migratory modes were induced, depending on the strengths of polarity, adhesion, and noise; i.e., cells migrate either as single cells, as a cluster, or aligned like beads on a string, as occurs in embryogenesis and cancer invasion. These results indicate that the simple expansion and contraction of cell-cell boundaries enables cells to move directionally forward and to produce the variety of collective migratory movements observed in living systems.
Collapse
Affiliation(s)
- Satoru Okuda
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
| | - Katsuhiko Sato
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Alert R, Martínez-Calvo A, Datta SS. Cellular Sensing Governs the Stability of Chemotactic Fronts. PHYSICAL REVIEW LETTERS 2022; 128:148101. [PMID: 35476484 DOI: 10.1103/physrevlett.128.148101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In contexts ranging from embryonic development to bacterial ecology, cell populations migrate chemotactically along self-generated chemical gradients, often forming a propagating front. Here, we theoretically show that the stability of such chemotactic fronts to morphological perturbations is determined by limitations in the ability of individual cells to sense and thereby respond to the chemical gradient. Specifically, cells at bulging parts of a front are exposed to a smaller gradient, which slows them down and promotes stability, but they also respond more strongly to the gradient, which speeds them up and promotes instability. We predict that this competition leads to chemotactic fingering when sensing is limited at too low chemical concentrations. Guided by this finding and by experimental data on E. coli chemotaxis, we suggest that the cells' sensory machinery might have evolved to avoid these limitations and ensure stable front propagation. Finally, as sensing of any stimuli is necessarily limited in living and active matter in general, the principle of sensing-induced stability may operate in other types of directed migration such as durotaxis, electrotaxis, and phototaxis.
Collapse
Affiliation(s)
- Ricard Alert
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
14
|
Ipiña EP, Camley BA. Collective gradient sensing with limited positional information. Phys Rev E 2022; 105:044410. [PMID: 35590664 DOI: 10.1103/physreve.105.044410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic cells sense chemical gradients to decide where and when to move. Clusters of cells can sense gradients more accurately than individual cells by integrating measurements of the concentration made across the cluster. Is this gradient-sensing accuracy impeded when cells have limited knowledge of their position within the cluster, i.e., limited positional information? We apply maximum likelihood estimation to study gradient-sensing accuracy of a cluster of cells with finite positional information. If cells must estimate their location within the cluster, this lowers the accuracy of collective gradient sensing. We compare our results with a tug-of-war model where cells respond to the gradient by polarizing away from their neighbors without relying on their positional information. As the cell positional uncertainty increases, there is a trade-off where the tug-of-war model responds more accurately to the chemical gradient. However, for sufficiently large cell clusters or sufficiently shallow chemical gradients, the tug-of-war model will always be suboptimal to one that integrates information from all cells, even if positional uncertainty is high.
Collapse
Affiliation(s)
- Emiliano Perez Ipiña
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
15
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
16
|
Suh YJ, Pandey M, Segall JE, Wu M. Tumor spheroid invasion in epidermal growth factor gradients revealed by a 3D microfluidic device. Phys Biol 2022; 19:10.1088/1478-3975/ac54c7. [PMID: 35158347 PMCID: PMC8957059 DOI: 10.1088/1478-3975/ac54c7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
Epidermal growth factor (EGF), a potent cytokine, is known to promote tumor invasion bothin vivoandin vitro. Previously, we observed that single breast tumor cells (MDA-MB-231 cell line) embedded within a 3D collagen matrix displayed enhanced motility but no discernible chemotaxis in the presence of linear EGF gradients using a microfluidic platform. Inspired by a recent theoretical development that clustered mammalian cells respond differently to chemical gradients than single cells, we studied tumor spheroid invasion within a 3D extracellular matrix (ECM) in the presence of EGF gradients. We found that EGF gradients promoted tumor cell detachment from the spheroid core, and the position of the tumor spheroid core showed a mild chemotactic response towards the EGF gradients. For those tumor cells detached from the spheroids, they showed an enhanced motility response in contrast to previous experimental results using single cells embedded within an ECM. No discernible chemotactic response towards the EGF gradients was found for the cells outside the spheroid core. This work demonstrates that a cluster of tumor cells responds differently than single tumor cells towards EGF gradients and highlights the importance of a tumor spheroid platform for tumor invasion studies.
Collapse
Affiliation(s)
- Young Joon Suh
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853, United States of America
| | - Mrinal Pandey
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853, United States of America
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States of America
| | - Mingming Wu
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
17
|
Bhattacharjee T, Amchin DB, Alert R, Ott JA, Datta SS. Chemotactic smoothing of collective migration. eLife 2022; 11:e71226. [PMID: 35257660 PMCID: PMC8903832 DOI: 10.7554/elife.71226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Collective migration-the directed, coordinated motion of many self-propelled agents-is a fascinating emergent behavior exhibited by active matter with functional implications for biological systems. However, how migration can persist when a population is confronted with perturbations is poorly understood. Here, we address this gap in knowledge through studies of bacteria that migrate via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We find that bacterial populations autonomously smooth out large-scale perturbations in their overall morphology, enabling the cells to continue to migrate together. This smoothing process arises from spatial variations in the ability of cells to sense and respond to the local nutrient gradient-revealing a population-scale consequence of the manner in which individual cells transduce external signals. Altogether, our work provides insights to predict, and potentially control, the collective migration and morphology of cellular populations and diverse other forms of active matter.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ricard Alert
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
- Princeton Center for Theoretical Science, Princeton UniversityPrincetonUnited States
| | - Jenna Anne Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Sujit Sankar Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
18
|
Wolf AE, Heinrich MA, Breinyn IB, Zajdel TJ, Cohen DJ. Short-term bioelectric stimulation of collective cell migration in tissues reprograms long-term supracellular dynamics. PNAS NEXUS 2022; 1:pgac002. [PMID: 35360553 PMCID: PMC8962779 DOI: 10.1093/pnasnexus/pgac002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/03/2021] [Accepted: 01/07/2022] [Indexed: 01/28/2023]
Abstract
The ability to program collective cell migration can allow us to control critical multicellular processes in development, regenerative medicine, and invasive disease. However, while various technologies exist to make individual cells migrate, translating these tools to control myriad, collectively interacting cells within a single tissue poses many challenges. For instance, do cells within the same tissue interpret a global migration 'command' differently based on where they are in the tissue? Similarly, since no stimulus is permanent, what are the long-term effects of transient commands on collective cell dynamics? We investigate these questions by bioelectrically programming large epithelial tissues to globally migrate 'rightward' via electrotaxis. Tissues clearly developed distinct rear, middle, side, and front responses to a single global migration stimulus. Furthermore, at no point poststimulation did tissues return to their prestimulation behavior, instead equilibrating to a 3rd, new migratory state. These unique dynamics suggested that programmed migration resets tissue mechanical state, which was confirmed by transient chemical disruption of cell-cell junctions, analysis of strain wave propagation patterns, and quantification of cellular crowd dynamics. Overall, this work demonstrates how externally driving the collective migration of a tissue can reprogram baseline cell-cell interactions and collective dynamics, even well beyond the end of the global migratory cue, and emphasizes the importance of considering the supracellular context of tissues and other collectives when attempting to program crowd behaviors.
Collapse
Affiliation(s)
- Abraham E Wolf
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Tom J Zajdel
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- To whom correspondence should be addressed. Address: Attn. , 111 Hoyt Laboratory, Princeton, NJ 08544, USA. E-mail:
| |
Collapse
|
19
|
Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration. Biophys J 2022; 121:44-60. [PMID: 34890578 PMCID: PMC8758422 DOI: 10.1016/j.bpj.2021.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.
Collapse
|
20
|
Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. ASTROBIOLOGY 2021; 21:813-830. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to sense gradients efficiently and acquire information about the ambient environment confers many advantages such as facilitating movement toward nutrient sources or away from toxic chemicals. The amplified dispersal evinced by organisms endowed with motility is possibly beneficial in related contexts. Hence, the connections between information acquisition, motility, and microbial size are explored from an explicitly astrobiological standpoint. By using prior theoretical models, the constraints on organism size imposed by gradient detection and motility are elucidated in the form of simple heuristic scaling relations. It is argued that environments such as alkaline hydrothermal vents, which are distinguished by the presence of steep gradients, might be conducive to the existence of "small" microbes (with radii of ≳0.1 μm) in principle, when only the above two factors are considered; other biological functions (e.g., metabolism and genetic exchange) could, however, regulate the lower bound on microbial size and elevate it. The derived expressions are potentially applicable to a diverse array of settings, including those entailing solvents other than water; for example, the lakes and seas of Titan. The article concludes with a brief exposition of how this formalism may be of practical and theoretical value to astrobiology.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Science, Florida Institute of Technology, Melbourne, Florida, USA
- Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Bhaskar D, Zhang WY, Wong IY. Topological data analysis of collective and individual epithelial cells using persistent homology of loops. SOFT MATTER 2021; 17:4653-4664. [PMID: 33949592 PMCID: PMC8276269 DOI: 10.1039/d1sm00072a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interacting, self-propelled particles such as epithelial cells can dynamically self-organize into complex multicellular patterns, which are challenging to classify without a priori information. Classically, different phases and phase transitions have been described based on local ordering, which may not capture structural features at larger length scales. Instead, topological data analysis (TDA) determines the stability of spatial connectivity at varying length scales (i.e. persistent homology), and can compare different particle configurations based on the "cost" of reorganizing one configuration into another. Here, we demonstrate a topology-based machine learning approach for unsupervised profiling of individual and collective phases based on large-scale loops. We show that these topological loops (i.e. dimension 1 homology) are robust to variations in particle number and density, particularly in comparison to connected components (i.e. dimension 0 homology). We use TDA to map out phase diagrams for simulated particles with varying adhesion and propulsion, at constant population size as well as when proliferation is permitted. Next, we use this approach to profile our recent experiments on the clustering of epithelial cells in varying growth factor conditions, which are compared to our simulations. Finally, we characterize the robustness of this approach at varying length scales, with sparse sampling, and over time. Overall, we envision TDA will be broadly applicable as a model-agnostic approach to analyze active systems with varying population size, from cytoskeletal motors to motile cells to flocking or swarming animals.
Collapse
Affiliation(s)
- Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering, Brown University, 184 Hope St Box D, Providence, RI 02912, USA. and Data Science Initiative, Brown University, 184 Hope St Box D, Providence, RI 02912, USA
| | - William Y Zhang
- Department of Computer Science, Brown University, 184 Hope St Box D, Providence, RI 02912, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, 184 Hope St Box D, Providence, RI 02912, USA. and Data Science Initiative, Brown University, 184 Hope St Box D, Providence, RI 02912, USA
| |
Collapse
|
22
|
Enhanced persistence and collective migration in cooperatively aligning cell clusters. Biophys J 2021; 120:1483-1497. [PMID: 33617837 DOI: 10.1016/j.bpj.2021.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Most cells possess the capacity to locomote. Alone or collectively, this allows them to adapt, to rearrange, and to explore their surroundings. The biophysical characterization of such motile processes, in health and in disease, has so far focused mostly on two limiting cases: single-cell motility on the one hand and the dynamics of confluent tissues such as the epithelium on the other. The in-between regime of clusters, composed of relatively few cells moving as a coherent unit, has received less attention. Such small clusters are, however, deeply relevant in development but also in cancer metastasis. In this work, we use cellular Potts models and analytical active matter theory to understand how the motility of small cell clusters changes with N, the number of cells in the cluster. Modeling and theory reveal our two main findings: cluster persistence time increases with N, whereas the intrinsic diffusivity decreases with N. We discuss a number of settings in which the motile properties of more complex clusters can be analytically understood, revealing that the focusing effects of small-scale cooperation and cell-cell alignment can overcome the increased bulkiness and internal disorder of multicellular clusters to enhance overall migrational efficacy. We demonstrate this enhancement for small-cluster collective durotaxis, which is shown to proceed more effectively than for single cells. Our results may provide some novel, to our knowledge, insights into the connection between single-cell and large-scale collective motion and may point the way to the biophysical origins of the enhanced metastatic potential of small tumor cell clusters.
Collapse
|
23
|
Buttenschön A, Edelstein-Keshet L. Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Comput Biol 2020; 16:e1008411. [PMID: 33301528 PMCID: PMC7728230 DOI: 10.1371/journal.pcbi.1008411] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mathematical and computational models can assist in gaining an understanding of cell behavior at many levels of organization. Here, we review models in the literature that focus on eukaryotic cell motility at 3 size scales: intracellular signaling that regulates cell shape and movement, single cell motility, and collective cell behavior from a few cells to tissues. We survey recent literature to summarize distinct computational methods (phase-field, polygonal, Cellular Potts, and spherical cells). We discuss models that bridge between levels of organization, and describe levels of detail, both biochemical and geometric, included in the models. We also highlight links between models and experiments. We find that models that span the 3 levels are still in the minority.
Collapse
Affiliation(s)
- Andreas Buttenschön
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
24
|
Abstract
The emergence of macroscopic order and patterns is a central paradigm in systems of (self-)propelled agents and a key component in the structuring of many biological systems. The relationships between the ordering process and the underlying microscopic interactions have been extensively explored both experimentally and theoretically. While emerging patterns often show one specific symmetry (e.g., nematic lane patterns or polarized traveling flocks), depending on the symmetry of the alignment interactions patterns with different symmetries can apparently coexist. Indeed, recent experiments with an actomysin motility assay suggest that polar and nematic patterns of actin filaments can interact and dynamically transform into each other. However, theoretical understanding of the mechanism responsible remains elusive. Here, we present a kinetic approach complemented by a hydrodynamic theory for agents with mixed alignment symmetries, which captures the experimentally observed phenomenology and provides a theoretical explanation for the coexistence and interaction of patterns with different symmetries. We show that local, pattern-induced symmetry breaking can account for dynamically coexisting patterns with different symmetries. Specifically, in a regime with moderate densities and a weak polar bias in the alignment interaction, nematic bands show a local symmetry-breaking instability within their high-density core region, which induces the formation of polar waves along the bands. These instabilities eventually result in a self-organized system of nematic bands and polar waves that dynamically transform into each other. Our study reveals a mutual feedback mechanism between pattern formation and local symmetry breaking in active matter that has interesting consequences for structure formation in biological systems.
Collapse
|
25
|
Colizzi ES, Vroomans RM, Merks RM. Evolution of multicellularity by collective integration of spatial information. eLife 2020; 9:56349. [PMID: 33064078 PMCID: PMC7652420 DOI: 10.7554/elife.56349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
At the origin of multicellularity, cells may have evolved aggregation in response to predation, for functional specialisation or to allow large-scale integration of environmental cues. These group-level properties emerged from the interactions between cells in a group, and determined the selection pressures experienced by these cells. We investigate the evolution of multicellularity with an evolutionary model where cells search for resources by chemotaxis in a shallow, noisy gradient. Cells can evolve their adhesion to others in a periodically changing environment, where a cell's fitness solely depends on its distance from the gradient source. We show that multicellular aggregates evolve because they perform chemotaxis more efficiently than single cells. Only when the environment changes too frequently, a unicellular state evolves which relies on cell dispersal. Both strategies prevent the invasion of the other through interference competition, creating evolutionary bi-stability. Therefore, collective behaviour can be an emergent selective driver for undifferentiated multicellularity.
Collapse
Affiliation(s)
| | - Renske Ma Vroomans
- Informatics Institute, University of Amsterdam; Origins Center, Amsterdam, Netherlands
| | - Roeland Mh Merks
- Mathematical Institute, Leiden University; Institute of Biology, Leiden University; Origins Center, Leiden, Netherlands
| |
Collapse
|
26
|
Hughes R, Yeomans JM. Collective chemotaxis of active nematic droplets. Phys Rev E 2020; 102:020601. [PMID: 32942458 DOI: 10.1103/physreve.102.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/12/2020] [Indexed: 11/07/2022]
Abstract
Collective chemotaxis plays a key role in the navigation of cell clusters in, e.g., embryogenesis and cancer metastasis. Using the active nematic continuum equations, coupled to a chemical field that regulates activity, we demonstrate and explain a physical mechanism that results in collective chemotaxis. The activity naturally leads to cell polarization at the cluster interface which induces outward flows. The chemical gradient then breaks the symmetry of the flow field, leading to a net motion. The velocity is independent of the cluster size, in agreement with experiment.
Collapse
Affiliation(s)
- Rian Hughes
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
27
|
Avanzini F, Falasco G, Esposito M. Chemical cloaking. Phys Rev E 2020; 101:060102. [PMID: 32688465 DOI: 10.1103/physreve.101.060102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/22/2020] [Indexed: 11/07/2022]
Abstract
Hiding an object in a chemical gradient requires one to suppress the distortions it would naturally cause on it. To do so, we propose a strategy based on coating the object with a chemical reaction-diffusion network which can act as an active cloaking device. By controlling the concentration of some species in its immediate surrounding, the chemical reactions redirect the gradient as if the object was not there. We also show that a substantial fraction of the energy required to cloak can be extracted from the chemical gradient itself.
Collapse
Affiliation(s)
- Francesco Avanzini
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg
| | - Gianmaria Falasco
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg
| |
Collapse
|
28
|
Caballero D, Kundu SC, Reis RL. The Biophysics of Cell Migration: Biasing Cell Motion with Feynman Ratchets. ACTA ACUST UNITED AC 2020. [DOI: 10.35459/tbp.2020.000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The concepts and frameworks of soft matter physics and the laws of thermodynamics can be used to describe relevant developmental, physiologic, and pathologic events in which directed cell migration is involved, such as in cancer. Typically, this directionality has been associated with the presence of soluble long-range gradients of a chemoattractant, synergizing with many other guidance cues to direct the motion of cells. In particular, physical inputs have been shown to strongly influence cell locomotion. However, this type of cue has been less explored despite the importance in biology. In this paper, we describe recent in vitro works at the interface between physics and biology, showing how the motion of cells can be directed by using gradient-free environments with repeated local asymmetries. This rectification of cell migration, from random to directed, is a process reminiscent of the Feynman ratchet; therefore, this framework can be used to explain the mechanism behind directed cell motion.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs–PT: Life and Health Sciences Research Institute (ICVS)/3B's Research Group Government Associate Laboratory, 4805-017, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
29
|
Parameter estimation for a point-source diffusion-decay morphogen model. J Math Biol 2020; 80:2227-2255. [DOI: 10.1007/s00285-020-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/08/2020] [Indexed: 10/24/2022]
|
30
|
Merchant B, Feng JJ. A Rho-GTPase based model explains group advantage in collective chemotaxis of neural crest cells. Phys Biol 2020; 17:036002. [DOI: 10.1088/1478-3975/ab71f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Hopkins A, Camley BA. Leader cells in collective chemotaxis: Optimality and trade-offs. Phys Rev E 2019; 100:032417. [PMID: 31639926 DOI: 10.1103/physreve.100.032417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/06/2022]
Abstract
Clusters of cells can work together in order to follow a signal gradient, chemotaxing even when single cells do not. Cells in different regions of collectively migrating neural crest streams show different gene expression profiles, suggesting that cells may specialize to leader and follower roles. We use a minimal mathematical model to understand when this specialization is advantageous. In our model, leader cells sense the gradient with an accuracy that depends on the kinetics of ligand-receptor binding, while follower cells follow the cluster's direction with a finite error. Intuitively, specialization into leaders and followers should be optimal when a few cells have more information than the rest of the cluster, such as in the presence of a sharp transition in chemoattractant concentration. We do find this-but also find that high levels of specialization can be optimal in the opposite limit of very shallow gradients. We also predict that the best location for leaders may not be at the front of the cluster. In following leaders, clusters may have to choose between speed and flexibility. Clusters with only a few leaders can take orders of magnitude more time to reorient than all-leader clusters.
Collapse
Affiliation(s)
- Austin Hopkins
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics & Astronomy and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|