Kosugi T, Matsushita YI. Wannier interpolation of one-particle Green's functions from coupled-cluster singles and doubles (CCSD).
J Chem Phys 2019;
150:114104. [PMID:
30902011 DOI:
10.1063/1.5079474]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose two schemes for interpolation of the one-particle Green's function (GF) calculated within a coupled-cluster singles and doubles (CCSD) method for a periodic system. These schemes use Wannier orbitals for circumventing huge cost for a large number of sampled k points. One of the schemes is the direct interpolation, which obtains the GF straightforwardly by using Fourier transformation. The other is the self-energy-mediated interpolation, which obtains the GF via the Dyson equation. We apply the schemes to a LiH chain and trans-polyacetylene and examine their validity in detail. It is demonstrated that the direct-interpolated GFs suffer from numerical artifacts stemming from slow convergence of CCSD GFs in real space, while the self-energy-mediated interpolation provides more physically appropriate GFs due to the localized nature of CCSD self-energies. Our schemes are also applicable to other correlated methods capable of providing GFs.
Collapse