1
|
Hofmann OT, Zojer E, Hörmann L, Jeindl A, Maurer RJ. First-principles calculations of hybrid inorganic-organic interfaces: from state-of-the-art to best practice. Phys Chem Chem Phys 2021; 23:8132-8180. [PMID: 33875987 PMCID: PMC8237233 DOI: 10.1039/d0cp06605b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
The computational characterization of inorganic-organic hybrid interfaces is arguably one of the technically most challenging applications of density functional theory. Due to the fundamentally different electronic properties of the inorganic and the organic components of a hybrid interface, the proper choice of the electronic structure method, of the algorithms to solve these methods, and of the parameters that enter these algorithms is highly non-trivial. In fact, computational choices that work well for one of the components often perform poorly for the other. As a consequence, default settings for one materials class are typically inadequate for the hybrid system, which makes calculations employing such settings inefficient and sometimes even prone to erroneous results. To address this issue, we discuss how to choose appropriate atomistic representations for the system under investigation, we highlight the role of the exchange-correlation functional and the van der Waals correction employed in the calculation and we provide tips and tricks how to efficiently converge the self-consistent field cycle and to obtain accurate geometries. We particularly focus on potentially unexpected pitfalls and the errors they incur. As a summary, we provide a list of best practice rules for interface simulations that should especially serve as a useful starting point for less experienced users and newcomers to the field.
Collapse
Affiliation(s)
- Oliver T Hofmann
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Egbert Zojer
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Lukas Hörmann
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Andreas Jeindl
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Li P, Lu ZH. Interface Engineering in Organic Electronics: Energy‐Level Alignment and Charge Transport. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Peicheng Li
- Department of Materials Science and Engineering University of Toronto Toronto M5S 3E4 Canada
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering University of Toronto Toronto M5S 3E4 Canada
- Department of Physics Center for Optoelectronics Engineering Research Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
3
|
Wang Q, Chen MT, Franco-Cañellas A, Shen B, Geiger T, F. Bettinger H, Schreiber F, Salzmann I, Gerlach A, Duhm S. Impact of fluorination on interface energetics and growth of pentacene on Ag(111). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1361-1370. [PMID: 32974114 PMCID: PMC7492695 DOI: 10.3762/bjnano.11.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/19/2020] [Indexed: 05/26/2023]
Abstract
We studied the structural and electronic properties of 2,3,9,10-tetrafluoropentacene (F4PEN) on Ag(111) via X-ray standing waves (XSW), low-energy electron diffraction (LEED) as well as ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). XSW revealed that the adsorption distances of F4PEN in (sub)monolayers on Ag(111) were 3.00 Å for carbon atoms and 3.05 Å for fluorine atoms. The F4PEN monolayer was essentially lying on Ag(111), and multilayers adopted π-stacking. Our study shed light not only on the F4PEN-Ag(111) interface but also on the fundamental adsorption behavior of fluorinated pentacene derivatives on metals in the context of interface energetics and growth mode.
Collapse
Affiliation(s)
- Qi Wang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Meng-Ting Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
| | - Antoni Franco-Cañellas
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Bin Shen
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Geiger
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Holger F. Bettinger
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Ingo Salzmann
- Department of Physics, Department of Chemistry & Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| | - Alexander Gerlach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Steffen Duhm
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
4
|
Franco-Cañellas A, Duhm S, Gerlach A, Schreiber F. Binding and electronic level alignment of π-conjugated systems on metals. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:066501. [PMID: 32101802 DOI: 10.1088/1361-6633/ab7a42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.
Collapse
Affiliation(s)
- Antoni Franco-Cañellas
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|