1
|
Gamage EH, Kamali S, Clark JK, Lee Y, Yox P, Shafer P, Yaroslavtsev AA, Ke L, Shatruk M, Kovnir K. As-Se Pentagonal Linkers to Induce Chirality and Polarity in Mixed-Valent Fe-Se Tetrahedral Chains Resulting in Hidden Magnetic Ordering. J Am Chem Soc 2022; 144:11283-11295. [PMID: 35700396 DOI: 10.1021/jacs.2c02936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel mixed-valent hybrid chiral and polar compound, Fe7As3Se12(en)6(H2O), has been synthesized by a single-step solvothermal method. The crystal structure consists of 1D [Fe5Se9] chains connected via [As3Se2]-Se pentagonal linkers and charge-balancing interstitial [Fe(en)3]2+ complexes (en = ethylenediamine). Neutron powder diffraction verified that interstitial water molecules participate in the crystal packing. Magnetic polarizability of the produced compound was confirmed by X-ray magnetic circular dichroism (XMCD) spectroscopy. X-ray absorption spectroscopy (XAS) and 57Fe Mössbauer spectroscopy showed the presence of mixed-valent Fe2+/Fe3+ in the Fe-Se chains. Magnetic susceptibility measurements reveal strong antiferromagnetic nearest neighbor interactions within the chains with no apparent magnetic ordering down to 2 K. Hidden short-range magnetic ordering below 70 K was found by 57Fe Mössbauer spectroscopy, showing that a fraction of the Fe3+/Fe2+ in the chains are magnetically ordered. Nevertheless, complete magnetic ordering is not achieved even at 6 K. Analysis of XAS spectra demonstrates that the fraction of Fe3+ in the chain increases with decreasing temperature. Computational analysis points out several competing ferrimagnetic ordered models within a single chain. This competition, together with variation in the Fe oxidation state and additional weak intrachain interactions, is hypothesized to prevent long-range magnetic ordering.
Collapse
Affiliation(s)
- Eranga H Gamage
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Saeed Kamali
- Mechanical, Aerospace & Biomedical Engineering Department, University of Tennessee Space Institute, Tullahoma, Tennessee 37388, United States.,Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Judith K Clark
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yongbin Lee
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Philip Yox
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Liqin Ke
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, 1800 E Paul Dirac Dr, Tallahassee, Florida 32310, United States
| | - Kirill Kovnir
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Ohkubo I, Mori T. Rational Design of 3d Transition-Metal Compounds for Thermoelectric Properties by Using Periodic Trends in Electron-Correlation Modulation. J Am Chem Soc 2022; 144:3590-3602. [PMID: 35170313 DOI: 10.1021/jacs.1c12520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures in solid-state transition-metal compounds can be represented by two parameters: the charge-transfer energy (Δ), which is the energy difference between the p-band of an anion and an upper Hubbard band contributed by transition-metal d-orbitals, and the onsite Coulomb repulsion energy (U), which represents the energy difference between lower and upper Hubbard bands composed of split d-orbitals in transition metals. These parameters can facilitate the classification of various types of electronic structures. In this study, the dependences of anion species (N3-, P3-, As3-, O2-, S2-, Se2-, Te2-, F-, Cl-, Br-, and I-) on Δ and U of 566 different binary and ternary 3d transition-metal compounds were investigated using ionic-model calculations. We were able to identify the systematic chemical trends in the variations in Δ and U values with the anion species of 11 different families of 3d transition-metal compounds in a comprehensive manner. The effective use of Δ-U diagrams given here, to facilitate the discovery and development of functional compounds, was demonstrated on thermoelectric compounds by classifying the thermoelectric properties of 3d transition-metal compounds and by predicting unrealized high-performance thermoelectric compounds.
Collapse
Affiliation(s)
- Isao Ohkubo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takao Mori
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
3
|
Straquadine JAW, Ikeda MS, Fisher IR. Frequency-dependent sensitivity of AC elastocaloric effect measurements explored through analytical and numerical models. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:083905. [PMID: 32872931 DOI: 10.1063/5.0019553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
We present a comprehensive study of the frequency-dependent sensitivity for measurements of the AC elastocaloric effect by applying both exactly soluble models and numerical methods to the oscillating heat flow problem. These models reproduce the finer details of the thermal transfer functions observed in experiments, considering here representative data for single-crystal Ba(Fe1-xCox)2As2. Based on our results, we propose a set of practical guidelines for experimentalists using this technique. This work establishes a baseline against which the frequency response of the AC elastocaloric technique can be compared and provides intuitive explanations of the detailed structure observed in experiments.
Collapse
Affiliation(s)
- J A W Straquadine
- Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, California 94305, USA and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M S Ikeda
- Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, California 94305, USA and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - I R Fisher
- Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, California 94305, USA and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
4
|
Bernardini F, Boeri L, Floris A, Franchini C, Profeta G, Sanna A. Special issue on novel superconducting and magnetic materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:040401. [PMID: 31600741 DOI: 10.1088/1361-648x/ab4cbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Fabio Bernardini
- CNR-IOM-Cagliari and Dipartimento di Fisica, Universit di Cagliari, 09042 Monserrato, Italy. Dipartimento di Fisica, Sapienza Universit di Roma, 00185 Roma, Italy. School of Mathematics and Physics, University of Lincoln, Brayford Pool, LN6 7TS, Lincoln, United Kingdom. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria. Dipartimento di Fisica e Astronomia, Universit di Bologna, I-40127 Bologna, Italy. CNR-SPIN and Dipartimento di Fisica, Universit degli Studi di L'Aquila, Via Vetoio 10, I-67100 L'Aquila, Italy. Max Planck Institut fr Microstrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | | | | | | | | | | |
Collapse
|