1
|
Ding W, Ong ZY, An M, Davier B, Hu S, Ohnishi M, Shiomi J. Optimally Suppressed Phonon Tunneling in van der Waals Graphene-WS 2 Heterostructure with Ultralow Thermal Conductivity. NANO LETTERS 2024; 24:13754-13759. [PMID: 39413286 DOI: 10.1021/acs.nanolett.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Van der Waals heterostructures have great potential for realizing ultimately low thermal conductivity because defectless interfaces can be constructed at a length scale smaller than the phonon wavelength, allowing modulation of coherent phonon transport. In this Letter, we demonstrate the mechanism for thermal conductivity reduction at a mode-resolved level. The graphene-WS2 heterostructure with the lowest cross-plane thermal conductivity of 0.048 W/(m·K) is identified from 16,384 candidates by combining Bayesian optimization and molecular dynamics simulations. Then, the angle-resolved phonon transmission is calculated using the mode-resolved atomistic Green's function. The results reveal that the optimal heterostructure nearly completely terminates phonon transport with finite incident angles, owing to the reduced critical incident angle and suppression of phonon tunneling.
Collapse
Affiliation(s)
- Wenyang Ding
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Zhun-Yong Ong
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Meng An
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Brice Davier
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Shiqian Hu
- School of Physics and Astronomy, Yunnan University, Kunming 650091, People's Republic of China
| | - Masato Ohnishi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Singh AK, Gao W, Deb P. Twist Proximity-Endowed Large Figure of Merit in a Band-Modulated CrI 3/1T-MoS 2 Moiré Superlattice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35438-35446. [PMID: 38937139 DOI: 10.1021/acsami.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Moiré superlattices with a robust twist proximity effect in the low-dimensional regime can facilitate nanoscale thermoelectric devices. In pristine systems, the low efficiency and lack of proficient control of thermoelectric properties impede desirable advancements in the field of energy conversion. In the present study, we demonstrate remarkable macroscopic thermoelectric response as a consequence of microscopic band structure modulation via the twist proximity in an engineered CrI3/1T-MoS2 moiré superlattice. The local twist effect, which leads to the microscopic phenomena of electron localization, results in a comprehensive electronic structure modulation. Consequently, these local effects convolute the macroscopic thermoelectric effect. Additionally, flat bands and angle-dependent metallic to semiconducting transitions are observed at 10.89, 23.41, and 30° twist angles. We correlate the observed phenomenon with the augmented spin-charge transport and interconversion via the twist proximity effect in its semiconducting phase. The estimated ultralow electronic and lattice thermal conductivities further corroborate with the observed large figure of merit and Seebeck coefficient. The maximum values of the Seebeck coefficient and figure of merit are estimated to be ∼413 μV/K and ∼4.3 at 200 K for 30° under the constant time relaxation approach. The twist-endowed outstanding thermoelectric effect in moiré superlattices with band modulation unveils a distinctive approach to establish efficient thermoelectric devices.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
4
|
Singh AK, Gao W, Deb P. Large thermoelectric transport in magnetically coupled CrI 3/1T-MoS 2vdW heterostructure via spin-charge interconversion. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:305704. [PMID: 38653260 DOI: 10.1088/1361-648x/ad4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Low-dimensional materials with prominent thermoelectric (TE) effect play a pivotal role in realizing state-of-the-art nanoscale TE devices. The fusion of TE effect with the magnetism through seamless integration of TE and magnetic materials in the 2D limit offers access to control longitudinal as well as transverse TE properties via magnetic proximity effect. Herein, we design a van der Waals (vdW) heterostructure of metallic 1T-MoS2with promising TE properties and a layer-dependent magnetic CrI3material. The result highlights exotic electronic and magnetic configurations of the designed monolayer-CrI3/1T-MoS2vdW heterostructure, which show magnetically-coupled TE characteristics. The observed remarkable magnetic proximity stems from large magnetic anisotropy energy and spin polarization, which are found to be 2.21 meV Cr-1and 12.30%, respectively. To this end, the semiconducting CrI3layer with intrinsic magnetism leads to efficient control and tunability of the observed spin-correlated anomalous Nernst effect. Moreover, a large dimensionless figure of merit of ∼6 and a power factor of∼3.8×1011/τ∘ Wm-1K-2s-1near the Fermi level at 300 K endorse the rejuvenated TE effect. The strong relativistic spin-orbit coupling validates the significant correlation of TE properties with intrinsic magnetic configuration. The present study underscores the significance of the magnetic proximity-governed TE effect in vdW heterostructures to engineer low-dimensional TE devices.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
5
|
Ding C, Duan Z, Luo N, Zeng J, Ren W, Tang L, Chen K. High Thermoelectric Performance of a Novel γ-PbSnX 2 (X = S, Se, Te) Monolayer: Predicted Using First Principles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091519. [PMID: 37177064 PMCID: PMC10180089 DOI: 10.3390/nano13091519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Two-dimensional (2D) group IV metal chalcogenides are potential candidates for thermoelectric (TE) applications due to their unique structural properties. In this paper, we predicted a 2D monolayer group IV metal chalcogenide semiconductor γ-PbSn2 (X = S, Se, Te), and first-principles calculations and Boltzmann transport theory were used to study the thermoelectric performance. We found that γ-PbSnX2 had an ultra-high carrier mobility of up to 4.04 × 103 cm2 V-1 s-1, which produced metal-like electrical conductivity. Moreover, γ-PbSn2 not only has a very high Seebeck coefficient, which leads to a high power factor, but also shows an intrinsically low lattice thermal conductivity of 6-8 W/mK at room temperature. The lower lattice thermal conductivity and high power factors resulted in excellent thermoelectric performance. The ZT values of γ-PbSnS2 and γ-PbSnSe2 were as high as 2.65 and 2.96 at 900 K, respectively. The result suggests that the γ-PbSnX2 monolayer is a better candidates for excellent thermoelectric performance.
Collapse
Affiliation(s)
- Changhao Ding
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhifu Duan
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Nannan Luo
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiang Zeng
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wei Ren
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liming Tang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Keqiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Jia PZ, Xie JP, Chen XK, Zhang Y, Yu X, Zeng YJ, Xie ZX, Deng YX, Zhou WX. Recent progress of two-dimensional heterostructures for thermoelectric applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:073001. [PMID: 36541472 DOI: 10.1088/1361-648x/aca8e4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The rapid development of synthesis and fabrication techniques has opened up a research upsurge in two-dimensional (2D) material heterostructures, which have received extensive attention due to their superior physical and chemical properties. Currently, thermoelectric energy conversion is an effective means to deal with the energy crisis and increasingly serious environmental pollution. Therefore, an in-depth understanding of thermoelectric transport properties in 2D heterostructures is crucial for the development of micro-nano energy devices. In this review, the recent progress of 2D heterostructures for thermoelectric applications is summarized in detail. Firstly, we systematically introduce diverse theoretical simulations and experimental measurements of the thermoelectric properties of 2D heterostructures. Then, the thermoelectric applications and performance regulation of several common 2D materials, as well as in-plane heterostructures and van der Waals heterostructures, are also discussed. Finally, the challenges of improving the thermoelectric performance of 2D heterostructures materials are summarized, and related prospects are described.
Collapse
Affiliation(s)
- Pin-Zhen Jia
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, People's Republic of China
| | - Jia-Ping Xie
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, People's Republic of China
| | - Xue-Kun Chen
- School of Mathematics and Physics, University of South China, Hengyang 421001, People's Republic of China
| | - Yong Zhang
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, People's Republic of China
| | - Xia Yu
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, People's Republic of China
| | - Yu-Jia Zeng
- School of Materials Science and Engineering and Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Zhong-Xiang Xie
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, People's Republic of China
| | - Yuan-Xiang Deng
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, People's Republic of China
| | - Wu-Xing Zhou
- School of Materials Science and Engineering and Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| |
Collapse
|
7
|
Bora M, Deb P. Proximity induced longitudinal and transverse thermoelectric response in graphene-ferromagnetic CrBr 3vdW heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:055402. [PMID: 36395505 DOI: 10.1088/1361-648x/aca3e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The integration of longitudinal and transverse thermoelectric (TE) fosters various new opportunities in tuning the charge transport behaviour and opens a platform for efficient thermopower devices. The presence of asymmetric electronic structure supposed to accomplish large thermopower and electronic figure of merit. Herein, we investigate magnetic proximity coupled longitudinal and transverse TE behaviour in heterostructure of monolayer semimetal, graphene and a monolayer ferromagnet, CrBr3under the framework ofab initio-based calculations and employed constant relaxation time approximation (CRTA).The integrated density of states is elevated and asymmetric near Fermi energy region due to seamless proximity integration, depicting mixed character of graphene and CrBr3. The asymmetric nature of electronic structure significantly affects the Seebeck coefficients (S) and electrical conductivity (σ/τ) of heterostructure. The consistent step-like conductance spectrum influences interfacial polarization due to agile proximity integration. The magnitude of Seebeck coefficient (S) is found to be 653µV K-1near Fermi level. The heterostructure observes higher electrical conductivity and power factor in n-type region of the order of 106S m-1and 1020cm-3at room temperature. The dimensionless electronic figure of merit (zTe) advocates the heterostructure system to be an ideal TE material. Alongside longitudinal TE, we also find the heterostructure system is sensitive to anomalous Nernst effect (ANE) (transverse TE) with oscillatory nature. The Seebeck and ANE shows high degree of tunability with applied external electric field. The synergistic existence of Seebeck and ANE due to proximity integration in van der Waals atomic crystal at room temperature will provide realistic approach to experimentally fabricate and develop real-time thermopower devices.
Collapse
Affiliation(s)
- Mayuri Bora
- Advanced Functional Material Laboratory (AFML), Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | - Pritam Deb
- Advanced Functional Material Laboratory (AFML), Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
8
|
A comparative study of interfacial thermal conductance between metal and semiconductor. Sci Rep 2022; 12:19907. [DOI: 10.1038/s41598-022-24379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractTo understand and control thermal conductance of interface between metal and semiconductor has now become a crucial task for the thermal design and management of nano-electronic and micro-electronic devices. The interfacial alignments and electronic characteristics of the interfaces between metal and semiconductor are studied using a first-principles calculation based on hybrid density functional theory. The thermal conductance of interfaces between metal and semiconductor were calculated and analyzed using diffuse mismatch model, acoustic mismatch model and nonequilibrium molecular dynamics methods. Especially, according to nonequilibrium molecular dynamics, the values of thermal conductance were obtained to be 32.55 MW m−2 K−1 and 341.87 MW m−2 K−1 at C–Cu and Si–Cu interfaces, respectively. These results of theoretical simulation calculations are basically consistent with the current experimental data, which indicates that phonon–phonon interaction play a more important role than electron–phonon interaction during heat transport. It may be effective way to improve the interfacial thermal conductance through enhancing the interface coupling strength at the metal–semiconductor interface because the strong interfacial scattering plays a role in suppressing in the weaker interface coupling heterostructure, leading to the lower thermal conductance of interfaces. This could provide a beneficial reference for the design of the Schottky diode and thermal management at the interfaces between metal and semiconductor.
Collapse
|
9
|
Hu R, Lei W, Yuan H, Han S, Liu H. High-Throughput Prediction of the Band Gaps of van der Waals Heterostructures via Machine Learning. NANOMATERIALS 2022; 12:nano12132301. [PMID: 35808137 PMCID: PMC9268276 DOI: 10.3390/nano12132301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023]
Abstract
Van der Waals heterostructures offer an additional degree of freedom to tailor the electronic structure of two-dimensional materials, especially for the band-gap tuning that leads to various applications such as thermoelectric and optoelectronic conversions. In general, the electronic gap of a given system can be accurately predicted by using first-principles calculations, which is, however, restricted to a small unit cell. Here, we adopt a machine-learning algorithm to propose a physically intuitive descriptor by which the band gap of any heterostructures can be readily obtained, using group III, IV, and V elements as examples of the constituent atoms. The strong predictive power of our approach is demonstrated by high Pearson correlation coefficient for both the training (292 entries) and testing data (33 entries). By utilizing such a descriptor, which contains only four fundamental properties of the constituent atoms, we have rapidly predicted the gaps of 7140 possible heterostructures that agree well with first-principles results for randomly selected candidates.
Collapse
|
10
|
Gan Y, Wu CW, Xie ZX, Deng YX, Zhang Y, Zhou WX, Chen XK. Excellent Medium-Temperature Thermoelectric Performance of Monolayer BiOCl. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7733-7739. [PMID: 35709528 DOI: 10.1021/acs.langmuir.2c00741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, a ternary-layered material BiOCl has elicited intense interest in photocatalysis, environmental remediation, and ultraviolet light detection because of its unique band gap of around 3.6 eV, low toxicity, and earth abundance. In particular, Gibson et al. reported a measurement of the in-plane thermal conductivity of BiOCl experimentally using a four-point-probe method [Science, 373, 1017-1022 (2021)], which is only 1.25 W/m K at 300 K. Motivated by the work, we studied the thermoelectric property of monolayer BiOCl using first-principles calculations combined with the Boltzmann transport equation. The calculated phonon thermal conductivity of monolayer BiOCl is 3 W/m K at 300 K, which is far below that of other promising 2D thermoelectric materials like graphyne and MoS2. A comprehensive analysis of phonon modes is conducted to reveal the low thermal conductivity. Moreover, the maximal ZT value is as high as 1.8 at 300 K and 5.7 at 800 K for the p-type doping with the 2 × 1015 cm-2 concentration. More importantly, we found that the thermoelectric efficiency of such 2D materials is significantly enhanced to 8 at 800 K by applying 1.5% tensile strain, which clearly outperforms that of the reported 2D thermoelectric material SnSe. The results shed light on the promising application in medium-temperature (600-900 K) thermoelectric devices.
Collapse
Affiliation(s)
- Yan Gan
- School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Chen-Wei Wu
- School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhong-Xiang Xie
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China
| | - Yuan-Xiang Deng
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China
| | - Yong Zhang
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China
| | - Wu-Xing Zhou
- School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xue-Kun Chen
- School of Mathematics and Physics, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
11
|
Ren Y, Zhang L, Zhu X, Li H, Dong Q, Liu S. Synthesis of transition metal dichalcogenide van der Waals heterostructures through chemical vapor deposition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:254002. [PMID: 35358958 DOI: 10.1088/1361-648x/ac6309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Transition metal dichalcogenide (TMD) van der Waals (vdW) heterostructures show great potential in the exploration of novel physical phenomena and practical applications. Compared to the traditional mechanical stacking techniques, chemical vapor deposition (CVD) method exhibits more advantages in preparing TMD vdW heterostructures. CVD enables the large-scale production of high-quality materials with clean interfaces in the future. Herein, CVD methods for the synthesis of TMD vdW heterostructures are summarized. These methods are categorized in two major strategies, multi-step process and one-step process. The effects of various factors are demonstrated, including the temperature, nucleation, and precursors. Finally, the remaining challenges are discussed.
Collapse
Affiliation(s)
- Yizhang Ren
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ling Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xukun Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
12
|
Zeng YJ, Ding ZK, Pan H, Feng YX, Chen KQ. Nonequilibrium Green's function method for phonon heat transport in quantum system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:223001. [PMID: 35263716 DOI: 10.1088/1361-648x/ac5c21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Phonon heat transport property in quantum devices is of great interesting since it presents significant quantum behaviors. In the past few decades, great efforts have been devoted to establish the theoretical method for phonon heat transport simulation in nanostructures. However, modeling phonon heat transport from wavelike coherent regime to particlelike incoherent regime remains a challenging task. The widely adopted theoretical approach, such as molecular dynamics, semiclassical Boltzmann transport equation, captures quantum mechanical effects within different degrees of approximation. Among them, Non-equilibrium Green's function (NEGF) method has attracted wide attention, as its ability to perform full quantum simulation including many-body interactions. In this review, we summarized recent theoretical advances of phonon NEGF method and the applications on the numerical simulation for phonon heat transport in nanostructures. At last, the challenges of numerical simulation are discussed.
Collapse
Affiliation(s)
- Yu-Jia Zeng
- Department of Physics, School of Physics and Electronic Science, Hunan University, Changsha, People's Republic of China
| | - Zhong-Ke Ding
- Department of Physics, School of Physics and Electronic Science, Hunan University, Changsha, People's Republic of China
| | - Hui Pan
- Department of Physics, School of Physics and Electronic Science, Hunan University, Changsha, People's Republic of China
| | - Ye-Xin Feng
- Department of Physics, School of Physics and Electronic Science, Hunan University, Changsha, People's Republic of China
| | - Ke-Qiu Chen
- Department of Physics, School of Physics and Electronic Science, Hunan University, Changsha, People's Republic of China
| |
Collapse
|
13
|
Wu CW, Zhou WX, Xie G, Chen XK, Wu D, Fan ZQ. Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance. NANOTECHNOLOGY 2022; 33:215402. [PMID: 35130521 DOI: 10.1088/1361-6528/ac5288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Based on the method of non-equilibrium Green's function, we investigate the thermal transport and thermoelectric properties of graphenylene nanoribbons (GRNRs) with different width and chirality. The results show that the thermoelectric (TE) performance of GRNRs significantly increases with decreasing ribbon width, which stems from the reduction of thermal conductance. In addition, by changing the ribbon width and chirality, the figure of merit (ZT) can be controllably manipulated and maximized up to 0.45 at room temperature. Moreover, it is found that theZTvalue of GRNRs with branched structure can reach 1.8 at 300 K and 3.4 at 800 K owing to the phonon local resonance. Our findings here are of great importance for thermoelectric applications of GRNRs.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Wu-Xing Zhou
- School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Guofeng Xie
- School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Xue-Kun Chen
- School of Mathematics and Physics, University of South China, Hengyang 421001, People's Republic of China
| | - Dan Wu
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Zhi-Qiang Fan
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| |
Collapse
|
14
|
Enhanced thermoelectric properties of poly(3,4‐ethylenedioxythiophene): Poly(styrenesulfonate)/copper phthalocyanine disulfonic acid composite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.50883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Deng YX, Chen SZ, Zhang Y, Yu X, Xie ZX, Tang LM, Chen KQ. Penta-Hexa-Graphene Nanoribbons: Intrinsic Magnetism and Edge Effect Induce Spin-Gapless Semiconducting and Half-Metallic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53088-53095. [PMID: 33197167 DOI: 10.1021/acsami.0c14768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional materials with intrinsic long-range ordered magnetic moments have drawn a lot of attention. However, for practical applications, whether or not the magnetism is stable in their nanostructures has not been revealed. Here, based on the recently proposed magnetic penta-hexa-graphene, we study the electronic and magnetic properties of its nanoribbons (named PHGNRs). The results show that the PHGNRs have intrinsic robust magnetic moments that are different from zigzag graphene nanoribbons, where the magnetic moments caused by the edge effect are vulnerable. Moreover, the magnetic ground states, namely, ferromagnetic (FM) or antiferromagnetic (AFM), can be transformed by changing the width of PHGNRs. Most interestingly, under the FM ground state, the spin-polarized electronic properties reveal that the zigzag PHGNRs transform from spin-gapless semiconductors (SGSs) to half-metals, as the width of nanoribbons increases, while all the armchair PHGNRs are magnetic semiconductors. Furthermore, by considering different edge effects caused by the residual carbon atoms on the edges, the PHGNRs can further derive different types of SGSs, as well as half-metals. Our work suggests that the PHGNRs possessing intrinsic robust magnetic moments have potential applications in the field of spintronic devices.
Collapse
Affiliation(s)
- Yuan-Xiang Deng
- School of Electrical Information Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shi-Zhang Chen
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Yong Zhang
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China
| | - Xia Yu
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China
| | - Zhong-Xiang Xie
- Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China
| | - Li-Ming Tang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ke-Qiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
16
|
Zhu XL, Yang H, Zhou WX, Wang B, Xu N, Xie G. KAgX (X = S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36102-36109. [PMID: 32666784 DOI: 10.1021/acsami.0c08843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer KAgX are a class of novel two-dimensional (2D) layered materials with efficient optical absorption and superior carrier mobility, signifying their potential application prospect in photovoltaic (PV) and thermoelectric (TE) fields. Motivated by the recent theoretical studies on the KAgX monolayer, we carried out systematic investigations on the TE performance of KAgS and KAgSe monolayers, employing density functional theory (DFT) and semiclassical Boltzmann transport equation (BTE). For both KAgSe and KAgS monolayers, large Grüneisen parameters, low group velocities, and short phonon scattering time greatly hinder their heat transport and result in an ultralow thermal conductivity, 0.26 and 0.33 W m-1 K-1 at 300 K, respectively. A twofold degeneracy appearing at the Γ point and the abrupt slope of the density of states (DOS) near the Fermi level give rise to high Seebeck coefficients of KAgX monolayers. Due to the ultralow thermal conductivity and excellent electronic transport performance, the ZT values as high as 4.65 (3.11) and 4.05 (2.63) at 500 (300) K in the n-type doping for KAgSe and KAgS monolayers are obtained. The exceptional performance of KAgX monolayers sheds light on their immense potential applications in the medium-temperature (around 300-500 K) thermoelectric devices and greatly stimulates further experimental synthesis and validation.
Collapse
Affiliation(s)
- Xue-Liang Zhu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengyu Yang
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wu-Xing Zhou
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Baotian Wang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ning Xu
- Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guofeng Xie
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, China
| |
Collapse
|
17
|
Chen XK, Pang M, Chen T, Du D, Chen KQ. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15517-15526. [PMID: 32153173 DOI: 10.1021/acsami.9b22498] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene/hexagonal boron nitride (h-BN) heterostructures assembled by van der Waals (vdW) interactions show numerous unique physical properties such as quantum Hall effects and exotic correlated states, which have promising potential applications in the design of novel electronic devices. Understanding thermal transport in such junctions is critical to control the performance and stability of prospective nanodevices. In this work, using nonequilibrium molecular dynamics simulations, we systematically investigate the thermal transport in asymmetric graphene/h-BN vdW heterostructures. It is found that the heat prefers to flow from the monolayer to the multilayer regions, resulting in a significant thermal rectification (TR) effect. To determine the optimum conditions for TR, the influences of sample length, defect density, asymmetric degree, ambient temperature, and vdW interaction strength are studied. Particularly, we found that the TR ratio could be improved by about 1 order of magnitude via increasing the coupling strength from 1 to 10, which clearly distinguishes from the commonly held notion that the TR ratio is practically insensitive or even decreasing with the interaction strength. Detailed spectral analysis reveals that this unexpected increase of the TR ratio can be attributed to heavily modified phonon properties of encased graphene due to enhanced interlayer coupling. Our results elucidate the importance of vdW interactions to heat conduction in nanostructures.
Collapse
Affiliation(s)
- Xue-Kun Chen
- School of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Min Pang
- School of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Tong Chen
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Dan Du
- School of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Ke-Qiu Chen
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|