1
|
Johnson PA. Beyond a Richardson-Gaudin Mean-Field: Slater-Condon Rules and Perturbation Theory. J Phys Chem A 2024; 128:6033-6045. [PMID: 39007410 DOI: 10.1021/acs.jpca.4c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Richardson-Gaudin states provide a basis of the Hilbert space for strongly correlated electrons. In this study, optimal expressions for the transition density matrix elements between Richardson-Gaudin states are obtained with a cost comparable with the corresponding reduced density matrix elements. Analogues of the Slater-Condon rules are identified based on the number of near-zero singular values of the RG state overlap matrix. Finally, a perturbative approach is shown to be close in quality to a configuration interaction of Richardson-Gaudin states while being feasible to compute.
Collapse
Affiliation(s)
- Paul A Johnson
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
2
|
Rivero Santamaría A, Piris M. Time evolution of natural orbitals in ab initio molecular dynamics. J Chem Phys 2024; 160:071102. [PMID: 38364005 DOI: 10.1063/5.0188491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
This work combines for the first time ab initio molecular dynamics (AIMD) within the Born-Oppenheimer approximation with a global natural orbital functional (GNOF), an approximate functional of the one-particle reduced density matrix. The most prominent feature of GNOF-AIMD is its ability to display the real-time evolution of natural orbitals, providing detailed information on the time-dependent electronic structure of complex systems and processes, including reactive collisions. The quartet ground-state reaction N(4S) + H2(1Σ) → NH(3Σ) + H(2S) is taken as a validation test. Collision energy influences on integral cross sections for different initial rovibrational states of H2 and rotational-state distributions of the NH product are discussed, showing a good agreement with previous high-quality theoretical results.
Collapse
Affiliation(s)
| | - Mario Piris
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain; and Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
3
|
Johnson PA, DePrince AE. Single Reference Treatment of Strongly Correlated H 4 and H 10 Isomers with Richardson-Gaudin States. J Chem Theory Comput 2023; 19:8129-8146. [PMID: 37955440 DOI: 10.1021/acs.jctc.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Richardson-Gaudin (RG) states are employed as a variational wave function ansatz for strongly correlated isomers of H4 and H10. In each case, a single RG state describes the seniority-zero sector quite well. Simple natural orbital functionals offer a cheap and reasonable approximation of the outstanding weak correlation in the seniority-zero sector, while systematic improvement is achieved by performing a configuration interaction in terms of RG states.
Collapse
Affiliation(s)
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
4
|
Huan Lew-Yee JF, Piris M, Del Campo JM. Outstanding improvement in removing the delocalization error by global natural orbital functional. J Chem Phys 2023; 158:084110. [PMID: 36859086 DOI: 10.1063/5.0137378] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work assesses the performance of the recently proposed global natural orbital functional (GNOF) against the charge delocalization error. GNOF provides a good balance between static and dynamic electronic correlations leading to accurate total energies while preserving spin, even for systems with a highly multi-configurational character. Several analyses were applied to the functional, namely, (i) how the charge is distributed in super-systems of two fragments, (ii) the stability of ionization potentials while increasing the system size, and (iii) potential energy curves of a neutral and charged diatomic system. GNOF was found to practically eliminate the charge delocalization error in many of the studied systems or greatly improve the results obtained previously with PNOF7.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
| | - Mario Piris
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain; and Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Euskadi, Spain
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
| |
Collapse
|
5
|
Lew-Yee JFH, Del Campo JM, Piris M. Electron Correlation in the Iron(II) Porphyrin by Natural Orbital Functional Approximations. J Chem Theory Comput 2023; 19:211-220. [PMID: 36579972 PMCID: PMC9996833 DOI: 10.1021/acs.jctc.2c01093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relative stability of the singlet, triplet, and quintet spin states of iron(II) porphyrin (FeP) represents a challenging problem for electronic structure methods. While it is currently accepted that the ground state is a triplet, multiconfigurational wave function-based methods predict a quintet, and density functional approximations vary between triplet and quintet states, leading to a prediction that highly depends on the features of the method employed. The recently proposed Global Natural Orbital Functional (GNOF) aims to provide a balanced treatment between static and dynamic correlation, and together with the previous Piris Natural Orbital Functionals (PNOFs), allowed us to explore the importance of each type of correlation in the stability order of the states of FeP with a method that conserves the spin of the system. It is noteworthy that GNOF correlates all electrons in all available orbitals for a given basis set; in the case of the FeP with a double-ζ basis set as used in this work, this means that GNOF can properly correlate 186 electrons in 465 orbitals, significantly increasing the sizes of systems amenable to multiconfigurational treatment. Results show that PNOF5, PNOF7s, and PNOF7 predict the quintet to have a lower energy than the triplet state; however, the addition of dynamic correlation via second-order Møller-Plesset corrections (NOF-MP2) turns the triplet state to be lower than the quintet state, a prediction also reproduced by GNOF that incorporates much more dynamic correlation than its predecessors.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México CityC.P. 04510, México
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México CityC.P. 04510, México
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080Donostia, Euskadi, Spain.,Donostia International Physics Center (DIPC), 20018Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Euskadi, Spain
| |
Collapse
|
6
|
Mercero JM, Grande-Aztatzi R, Ugalde JM, Piris M. Natural orbital functional theory studies of all-metal aromaticity: The Al 3−anion. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Lew-Yee JFH, M. del Campo J. Charge delocalization error in Piris Natural Orbital Functionals. J Chem Phys 2022; 157:104113. [DOI: 10.1063/5.0102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Piris Natural Orbital Functionals (PNOF) have been recognized as a low-scaling alternative to study strong correlated systems. In this work, we address the performance of the fifth functional (PNOF5) and the seventh functional (PNOF7) to deal with another common problem, the charge delocalization error. The effects of this problem can be observed in charged systems of repeated well-separated fragments, where the energy should be the sum of the charged and neutral fragments, regardless of how the charge is distributed. In practice, an energetic overstabilization of fractional charged fragments leads to a preference for having the charge delocalized throughout the system. To establish the performance of PNOF functionals regarding charge delocalization error, charged chains of helium atoms and the W4-17-MR set molecules were used as base fragments and their energy, charge distribution and correlation regime were studied. It was found that PNOF5 prefers localized charge distributions, while PNOF7 improves the treatment of interpair static correlation and tends to the correct energetic limit for several cases, although a preference for delocalized charge distributions may arise in highly strong correlation regimes. Overall, it is concluded that PNOF functionals can simultaneously deal with static correlation and charge delocalization errors, resulting in a promising choice to study charge-related problems.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México Facultad de Química, Mexico
| | - Jorge M. del Campo
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
8
|
Mitxelena I, Piris M. Benchmarking GNOF against FCI in challenging systems in one, two, and three dimensions. J Chem Phys 2022; 156:214102. [DOI: 10.1063/5.0092611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This work assesses the reliability of the recently proposed [M. Piris, Phys. Rev. Lett. 127, 233001 (2021)] global natural orbital functional (GNOF) in the treatment of the strong electron correlation regime. First, we use an H10 benchmark set of four hydrogen model systems of different dimensionalities and distinctive electronic structures: a 1D chain, a 2D ring, a 2D sheet, and a 3D close-packed pyramid. Second, we study two paradigmatic models for strongly correlated Mott insulators, namely, a 1D H50 chain and a 4 × 4 × 4 3D H cube. We show that GNOF, without hybridization to other electronic structure methods and free of tuned parameters, succeeds in treating weak and strong correlation in a more balanced way than the functionals that have preceded it.
Collapse
Affiliation(s)
- Ion Mitxelena
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Mario Piris
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
9
|
Moisset JD, Fecteau CÉ, Johnson PA. Density matrices of seniority-zero geminal wavefunctions. J Chem Phys 2022; 156:214110. [DOI: 10.1063/5.0088602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Scalar products and density matrix elements of closed-shell pair geminal wavefunctions are evaluated directly in terms of the pair amplitudes, resulting in an analog of Wick’s theorem for fermions or bosons. This expression is, in general, intractable, but it is shown how it becomes feasible in three distinct ways for Richardson–Gaudin (RG) states, the antisymmetrized geminal power, and the antisymmetrized product of strongly orthogonal geminals. Dissociation curves for hydrogen chains are computed with off-shell RG states and the antisymmetrized product of interacting geminals. Both are near exact, suggesting that the incorrect results observed with ground state RG states (a local maximum rather than smooth dissociation) may be fixable using a different RG state.
Collapse
Affiliation(s)
| | | | - Paul A. Johnson
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
10
|
Rodríguez-Mayorga M, Mitxelena I, Bruneval F, Piris M. Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by Using Nondynamically Correlated Canonical Orbitals. J Chem Theory Comput 2021; 17:7562-7574. [PMID: 34806362 DOI: 10.1021/acs.jctc.1c00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop a new family of electronic structure methods for capturing at the same time the dynamic and nondynamic correlation effects. We combine the natural orbital functional theory (NOFT) and many-body perturbation theory (MBPT) through a canonicalization procedure applied to the natural orbitals to gain access to any MBPT approximation. We study three different scenarios: corrections based on second-order Møller-Plesset (MP2), random-phase approximation (RPA), and coupled-cluster singles doubles (CCSD). Several chemical problems involving different types of electron correlation in singlet and multiplet spin states have been considered. Our numerical tests reveal that RPA-based and CCSD-based corrections provide similar relative errors in molecular dissociation energies (De) to the results obtained using a MP2 correction. With respect to the MP2 case, the CCSD-based correction improves the prediction, while the RPA-based correction reduces the computational cost.
Collapse
Affiliation(s)
- Mauricio Rodríguez-Mayorga
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif Sur Yvette, France.,Department of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif Sur Yvette, France
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Euskadi, Spain
| |
Collapse
|
11
|
Piris M. Global Natural Orbital Functional: Towards the Complete Description of the Electron Correlation. PHYSICAL REVIEW LETTERS 2021; 127:233001. [PMID: 34936779 DOI: 10.1103/physrevlett.127.233001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
The current work presents a natural orbital functional (NOF) for electronic systems with any spin value independent of the external potential being considered, that is, a global NOF (GNOF). It is based on a new two-index reconstruction of the two-particle reduced density matrix for spin multiplets. The emergent functional describes the complete intrapair electron correlation, and the correlation between orbitals that make up both the pairs and the individual electrons. The interorbital correlation is composed of static and dynamic terms. The concept of dynamic part of the occupation numbers is introduced. To evaluate the accuracy achieved with the GNOF, calculation of a variety of properties is presented. They include the total energies and energy differences between the ground state and the lowest-lying excited state with different spin of atoms from H to Ne, ionization potentials of the first-row transition-metal atoms (Sc-Zn), and the total energies of a selected set of 55 molecular systems in different spin states. The GNOF is also applied to the homolytic dissociation of selected diatomic molecules in different spin states and to the rotation barrier of ethylene, both paradigmatic cases of systems with significant multiconfigurational character. The values obtained agree with those reported at high level of theory and experimental data.
Collapse
Affiliation(s)
- Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Spain Donostia International Physics Center (DIPC), 20018 Donostia, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Chemical reactivity studies by the natural orbital functional second-order Møller–Plesset (NOF-MP2) method: water dehydrogenation by the scandium cation. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lew-Yee JFH, Piris M, M Del Campo J. Resolution of the identity approximation applied to PNOF correlation calculations. J Chem Phys 2021; 154:064102. [PMID: 33588540 DOI: 10.1063/5.0036404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, the required algebra to employ the resolution of the identity approximation within the Piris Natural Orbital Functional (PNOF) is developed, leading to an implementation named DoNOF-RI. The arithmetic scaling is reduced from fifth-order to fourth-order, and the memory scaling is reduced from fourth-order to third-order, allowing significant computational time savings. After the DoNOF-RI calculation has fully converged, a restart with four-center electron repulsion integrals can be performed to remove the effect of the auxiliary basis set incompleteness, quickly converging to the exact result. The proposed approach has been tested on cycloalkanes and other molecules of general interest to study the numerical results, as well as the speed-ups achieved by PNOF7-RI when compared with PNOF7.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
| | - Mario Piris
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080 Donostia, Euskadi, Spain; and Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Euskadi, Spain
| | - Jorge M Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
| |
Collapse
|
14
|
Mitxelena I, Piris M. An efficient method for strongly correlated electrons in two-dimensions. J Chem Phys 2020; 152:064108. [PMID: 32061239 DOI: 10.1063/1.5140985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work deals with the problem of strongly correlated electrons in two-dimensions. We give a reduced density matrix (RDM) based tool through which the ground-state energy is given as a functional of the natural orbitals and their occupation numbers. Specifically, the Piris Natural Orbital Functional 7 (PNOF7) is used for studying the 2D Hubbard model and hydrogen square lattices. The singlet ground-state is studied, as well as the doublet mixed quantum state obtained by extracting an electron from the system. Our method satisfies two-index necessary N-representability conditions of the two-particle RDM (2RDM) and guarantees the conservation of the total spin. We show the ability of PNOF7 to describe strong correlation effects in two-dimensional (2D) systems by comparing our results with the exact diagonalization, density matrix renormalization group (DMRG), and auxiliary-field quantum Monte Carlo calculations. PNOF7 overcomes variational 2RDM methods with two- and three-index positivity N-representability conditions, reducing computational cost to mean-field scaling. Consistent results are obtained for small and large systems up to 144 electrons, weak and strong correlation regimes, and many filling situations. Unlike other methods, there is no dependence on dimensionality in the results obtained with PNOF7 and no particular difficulties have been observed to converge PNOF7 away from half-filling. Smooth double occupancy of sites is obtained, regardless of the filling. Symmetric dissociation of 2D hydrogen lattices shows that long-range nondynamic correlation dramatically affects electron detachment energies. PNOF7 compares well with DMRG along the dissociation curve.
Collapse
Affiliation(s)
- Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| |
Collapse
|