1
|
Johannsen S, Robles R, Weismann A, Ridier K, Berndt R, Gruber M. Spin-State Switching of Spin-Crossover Complexes on Cu(111) Evidenced by Spin-Flip Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202411865. [PMID: 39185688 PMCID: PMC11627136 DOI: 10.1002/anie.202411865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Spin-crossover compounds can be switched between two stable states with different magnetic moments, conformations, electronic, and optical properties, which opens appealing perspectives for technological applications including miniaturization down to the scale of single molecules. Although control of the spin states is crucial their direct identification is challenging in single-molecule experiments. Here we investigate the spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3)2] on a Cu(111) surface with scanning tunneling microscopy and density functional theory calculations. Spin crossover of single molecules in dense islands is achieved via electron injection. Spin-flip excitations are resolved in scanning tunneling spectra in a magnetic field enabling the direct identification of the molecular spin state, and revealing the existence of magnetic anisotropy in the HS molecules.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)20018Donostia-San SebastiánSpain
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Karl Ridier
- LCC, CNRS and Université de Toulouse, UPS, INP31077ToulouseFrance
| | - Richard Berndt
- Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-Universität zu Kiel24098KielGermany
| | - Manuel Gruber
- Faculty of Physics and CENIDEUniversity of Duisburg-Essen47057DuisburgGermany
| |
Collapse
|
2
|
Horniichuk OY, Vendier L, Salmon L, Bousseksou A. Gradual spin crossover behavior encompasing room temperature in an iron(II) complex based on a heteroscorpionate ligand. Dalton Trans 2024; 53:17083-17096. [PMID: 39363738 DOI: 10.1039/d4dt02244k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this paper, we report the synthesis of six novel triazole-based heteroscorpionate ligands based on heterocycle metathesis reactions and their iron(II) complexes. Single crystal structure analyses were performed, the spectroscopic and magnetic properties of the obtained complexes were studied and their spin crossover-structural relationships were compared to those obtained for their pyrazole-based analogues reported in the literature. In particular, the amino derivative complex bis[hydrobis(pyrazol-1-yl)(3-amino-1,2,4-triazol-1-yl)]iron(II) obtained by post-synthetic catalytic nitro-group reduction under pressure of hydrogen in an autoclave presents a scarce gradual spin crossover behavior at room temperature. The profile of the SCO curve can be explained by the presence of only relatively weak H bonds, spreading only in one dimension. Among the interesting spin transition behaviors observed for the different complexes, such stable, complete and gradual spin crossover at room temperature makes this neutral complex a good candidate for sublimation and future investigation as an active element notably for thermoreflectance-based surface microthermometry applications.
Collapse
Affiliation(s)
- Oleksandr Ye Horniichuk
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Laure Vendier
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Lionel Salmon
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| | - Azzedine Bousseksou
- LCC, CNRS and Université de Toulouse (UPS, INP), 205 Route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
3
|
Chin WK, Tamang B, Zaz MZ, Subedi A, Viswan G, N’Diaye AT, Lai RY, Dowben PA. Evidence of Cooperative Effects for the Fe(phen) 2(NCS) 2 Spin Crossover Molecular Complex in Polyaniline Plus Iron Magnetite. Molecules 2024; 29:4574. [PMID: 39407504 PMCID: PMC11477724 DOI: 10.3390/molecules29194574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The spin crossover complex Fe(phen)2(NCS)2 and its composite, Fe(phen)2(NCS)2, combined with the conducting polymer polyaniline (PANI) plus varying concentrations of iron magnetite (Fe3O4) nanoparticles were studied. A cooperative effect is evident from the hysteresis width in the plot of magnetic susceptibility multiplied by temperature versus temperature (χmT versus T) for Fe(phen)2(NCS)2 with PANI plus varying concentrations of Fe3O4 nanoparticles. The hysteresis width in the composites vary no more than 2 K with respect to the pristine Fe(phen)2(NCS)2 spin crossover crystallites despite the fact that there exists a high degree of miscibility of the Fe(phen)2(NCS)2 spin crossover complex with the PANI. The Fe3O4 nanoparticles in the Fe(phen)2(NCS)2 plus PANI composite tend to agglomerate at higher concentrations regardless of the spin state of Fe(phen)2(NCS)2. Of note is that the Fe3O4 nanoparticles are shown to be antiferromagnetically coupled with the Fe(phen)2(NCS)2 when Fe(phen)2(NCS)2 is in the high spin state.
Collapse
Affiliation(s)
- Wai Kiat Chin
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (W.K.C.); (M.Z.Z.); (A.S.); (G.V.)
| | - Binny Tamang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - M. Zaid Zaz
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (W.K.C.); (M.Z.Z.); (A.S.); (G.V.)
| | - Arjun Subedi
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (W.K.C.); (M.Z.Z.); (A.S.); (G.V.)
| | - Gauthami Viswan
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (W.K.C.); (M.Z.Z.); (A.S.); (G.V.)
| | - Alpha T. N’Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rebecca Y. Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Peter A. Dowben
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (W.K.C.); (M.Z.Z.); (A.S.); (G.V.)
| |
Collapse
|
4
|
Zhang Y. Surface-Induced Electronic and Vibrational Level Shifting of [Fe(py) 2bpym(NCS) 2] on Al(100). MATERIALS (BASEL, SWITZERLAND) 2023; 16:6150. [PMID: 37763428 PMCID: PMC10532516 DOI: 10.3390/ma16186150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
It is essential that one understands how the surface degrees of freedom influence molecular spin switching to successfully integrate spin crossover (SCO) molecules into devices. This study uses density functional theory calculations to investigate how spin state energetics and molecular vibrations change in a Fe(II) SCO compound named [Fe(py)2bpym(NCS)2] when deposited on an Al(100) surface. The calculations consider an environment-dependent U to assess the local Coulomb correlation of 3d electrons. The results show that the adsorption configurations heavily affect the spin state splitting, which increases by 10-40 kJmol-1 on the surface, and this is detrimental to spin conversion. This effect is due to the surface binding energy variation across the spin transition. The preference for the low-spin state originates partly from the strong correlation effect. Furthermore, the surface environment constrains the vibrational entropy difference, which decreases by 8-17 Jmol-1K-1 (at 300 K) and leads to higher critical temperatures. These results suggest that the electronic energy splitting and vibrational level shifting are suitable features for characterizing the spin transition process on surfaces, and they can provide access to high-throughput screening of spin crossover devices.
Collapse
Affiliation(s)
- Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
5
|
Johannsen S, Gruber M, Barreteau C, Seredyuk M, Antonio Real J, Markussen T, Berndt R. Spin-Crossover and Fragmentation of Fe(neoim) 2 on Silver and Gold. J Phys Chem Lett 2023; 14:7814-7823. [PMID: 37623823 DOI: 10.1021/acs.jpclett.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The neutral spin crossover complex Fe(neoim)2, neoim being the deprotonated form of the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline (neoimH), is investigated on the (111) surfaces of Au and Ag using scanning tunneling microscopy and density functional theory calculations. The complex sublimates and adsorbs intact on Ag(111), where it exhibits an electron-induced spin crossover. However, it fragments on Au. According to density functional theory calculations, the adsorbed complex is drastically distorted by the interactions with the substrates, in particular by van der Waals forces. Dispersion interaction is also decisive for the relative stabilities of the low- and high-spin states of the adsorbed complex. The unexpected instability of the complex on the gold substrate is attributed to enhanced covalent bonding of the fragments to the substrate.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Faculty of Physics and CENIDE, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Cyrille Barreteau
- Université Paris-Saclay CEA, CNRS SPEC, 91191 Gif-sur-Yvette, France
| | - Maksym Seredyuk
- Instituto de Ciencia Molecular (ICMol)/Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street 01601 Kyiv, Ukraine
| | - José Antonio Real
- Instituto de Ciencia Molecular (ICMol)/Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
6
|
Sánchez-de-Armas R, Jaber El Lala I, Calzado CJ. How complex-surface interactions modulate the spin transition of Fe(II) SCO complexes supported on metallic surfaces? Phys Chem Chem Phys 2023; 25:21673-21683. [PMID: 37551593 DOI: 10.1039/d3cp02539j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The deposition of a prototypical spin-crossover [Fe(phen)2(NCS)2] complex on Au(111), Cu(111) and Ag(111) surfaces has been investigated by means of periodic DFT+U calculations, with the aim of understanding how different metallic surfaces affect the spin state switching. Our results show that adsorption is metal- and spin-dependent, with different preferred adsorption sites for the different surfaces and spin states. For the three considered surfaces adsorption energies are larger in the LS state than in the HS one, which increases the transition enthalpy by 58.7 kJ mol-1 for Cu(111), 14.6 kJ mol-1 for Au(111) and 9.6 kJ mol-1 for Ag(111) with respect to the free molecule. There is a clear correlation between this effect and the extent of the complex-surface interaction, which can be established from adsorption energies, surface-complex distances and charge density difference plots as: Cu(111) > Au(111) > Ag(111). Therefore, a stronger interaction with the surface produces a larger energy difference between two spin states, making the spin transition less probable to occur. Finally, our calculations show that it would be possible to probe the spin-state of the deposited molecules from the STM images, in line with the recent experimental results.
Collapse
Affiliation(s)
- Rocío Sánchez-de-Armas
- Departamento de Química Física, Universidad de Sevilla, C. Prof. García González, s/n, 41012, Spain.
| | - Iman Jaber El Lala
- Departamento de Química Física, Universidad de Sevilla, C. Prof. García González, s/n, 41012, Spain.
| | - Carmen J Calzado
- Departamento de Química Física, Universidad de Sevilla, C. Prof. García González, s/n, 41012, Spain.
| |
Collapse
|
7
|
Grunwald J, Torres J, Buchholz A, Näther C, Kämmerer L, Gruber M, Rohlf S, Thakur S, Wende H, Plass W, Kuch W, Tuczek F. Defying the inverse energy gap law: a vacuum-evaporable Fe(ii) low-spin complex with a long-lived LIESST state. Chem Sci 2023; 14:7361-7380. [PMID: 37416721 PMCID: PMC10321519 DOI: 10.1039/d3sc00561e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
The novel vacuum-evaporable complex [Fe(pypypyr)2] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.
Collapse
Affiliation(s)
- Jan Grunwald
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany +49 431 880 1520 +49 431 880 1410
| | - Jorge Torres
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany +49 30 838 452098 +49 30 838 52098
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena 07743 Jena Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany +49 431 880 1520 +49 431 880 1410
| | - Lea Kämmerer
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen 47048 Duisburg Germany
| | - Manuel Gruber
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen 47048 Duisburg Germany
| | - Sebastian Rohlf
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany
| | - Sangeeta Thakur
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany +49 30 838 452098 +49 30 838 52098
| | - Heiko Wende
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen 47048 Duisburg Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena 07743 Jena Germany
| | - Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany +49 30 838 452098 +49 30 838 52098
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel 24098 Kiel Germany +49 431 880 1520 +49 431 880 1410
| |
Collapse
|
8
|
Yazdani S, Phillips J, Ekanayaka TK, Cheng R, Dowben PA. The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials. Molecules 2023; 28:3735. [PMID: 37175145 PMCID: PMC10180229 DOI: 10.3390/molecules28093735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.
Collapse
Affiliation(s)
- Saeed Yazdani
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Jared Phillips
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Thilini K. Ekanayaka
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Peter A. Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| |
Collapse
|
9
|
Preetha Genesh N, Cui D, Dettmann D, MacLean O, Johal TK, Lunchev AV, Grimsdale AC, Rosei F. Selective Self-Assembly and Modification of Herringbone Reconstructions at a Solid-Liquid Interface of Au(111). J Phys Chem Lett 2023; 14:3057-3062. [PMID: 36946688 DOI: 10.1021/acs.jpclett.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The precise control of molecular self-assembly on surfaces presents many opportunities for the creation of complex nanostructures. Within this endeavor, selective patterning by exploiting molecular interactions at the solid-liquid interface would be a beneficial capability. Using scanning tunneling microscopy at the 1,2,4-trichlorobenzene/Au(111) interface, we observed selective self-assembly of 1,3,5-tris(4-methoxyphenyl)benzene (TMPB) molecules in the face-centered cubic (FCC) regions of Au(111). Density functional theory calculations suggest higher adsorption energy of TMPB molecules at FCC regions, explaining the preference for self-assembly. The molecular coverage is found to increase with the concentration of the applied solution, eventually yielding a full monolayer. Moreover, the adsorption of TMPB molecules induces a concentration-dependent lifting of the herringbone reconstruction, observed as an increase in the area of the FCC regions at higher concentrations. Our results represent a simple and cost-effective selective nanoscale patterning method on Au(111), providing a possible avenue to guide the co-adsorption of other functional molecules.
Collapse
Affiliation(s)
- Navathej Preetha Genesh
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Daling Cui
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Oliver MacLean
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, Jilin 130103, People's Republic of China
| | - Tarnjit Kaur Johal
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Andrey V Lunchev
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Andrew C Grimsdale
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
10
|
Le D, Jiang T, Gakiya-Teruya M, Shatruk M, Rahman TS. On stabilizing spin crossover molecule [Fe(tBu 2qsal) 2] on suitable supports: insights from ab initiostudies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:385201. [PMID: 34342269 DOI: 10.1088/1361-648x/ac0beb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Au(111) is one of the substrates often used for supporting spin crossover (SCO) molecules, partly because of its inertness and partly because it is conducting. Using density functional theory based calculations of [Fe(tBu2qsal)2] SCO molecules adsorbed on the Au(111) surface, we show that while Au(111) may not be a suitable support for the molecule, it may be so for a monolayer (ML) of molecules. While, physisorption of [Fe(tBu2qsal)2] on Au(111) leads to electron transfer from the highest occupied molecular orbital to the substrate, electron transfer is minimal for a ML of [Fe(tBu2qsal)2] on Au(111), causing only negligible changes in the electronic structure and magnetic moment of the molecules. Furthermore, a small difference in energy between the ferromagnetic and antiferromagnetic configurations of the molecules in the ML indicates a weak magnetic coupling between the molecules. These results suggest Au(111) as a plausible support for a ML of [Fe(tBu2qsal)2], making such a molecular assembly suitable for electronic and spin transport applications. As for [Fe(tBu2qsal)2] SCO molecules themselves, we find hexagonal boron nitride (h-BN) to be a viable support for them, as there is hardly any charge transfer, while graphene displays stronger interaction with the molecule (thanh-BN does) resulting in charge transfer from the molecule to graphene.
Collapse
Affiliation(s)
- Duy Le
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Tao Jiang
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Miguel Gakiya-Teruya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, United States of America
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, United States of America
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, United States of America
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| |
Collapse
|
11
|
Johannsen S, Ossinger S, Markussen T, Tuczek F, Gruber M, Berndt R. Electron-Induced Spin-Crossover in Self-Assembled Tetramers. ACS NANO 2021; 15:11770-11778. [PMID: 34133115 DOI: 10.1021/acsnano.1c02698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spin crossover compound Fe(H2B(pyrazole)(pyridylpyrazole))2 was investigated in detail on Ag(111) with scanning tunneling microscopy (STM). A large fraction of the deposited molecules condenses into gridlike tetramers. Two molecules of each tetramer may be converted between two states by current injection. We attribute this effect to a spin transition. This interpretation is supported by control experiments on the analogous, magnetically passive Zn compound that forms virtually identical tetramers but exhibits no switching. The switching yields were studied for various electron energies, and the resulting values exceed those reported from other SCO systems by 2 orders of magnitude. The other two molecules of a tetramer were immutable. However, they may be used as contacts for current injection that leads to conversion of one of their neighbors. This "remote" switching is fairly efficient with yields reduced by only one to two orders of magnitude compared to direct excitation of a switchable molecule. We present a model of the tetramer structure that reproduces key observations from the experiments. In particular, sterical blocking prevents spin crossover of two molecules of a tetramer. Density functional theory calculations show that the model indeed represents a minimum energy structure. They also reproduce STM images and corroborate a remote-switching mechanism that is based on electron transfer between molecules.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Sascha Ossinger
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Troels Markussen
- Synopsys Denmark, Fruebjergvej 3, Postbox 4, DK-2100 Copenhagen, Denmark
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
12
|
Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7030037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.
Collapse
|
13
|
Zhang Y. Surface effects on temperature-driven spin crossover in Fe(phen) 2(NCS) 2. J Chem Phys 2020; 153:134704. [DOI: 10.1063/5.0027641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
14
|
Abstract
The transfer of the inherent bistability of spin crossover compounds to surfaces has attracted considerable interest in recent years. The deposition of the complexes on surfaces allows investigating them individually and to further understand the microscopic mechanisms at play. Moreover, it offers the prospect of engineering switchable functional surfaces. We review recent progress in the field with a particular focus on the challenges and limits associated with the dominant experimental techniques used, namely near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and scanning tunneling microscopy (STM). One of the main difficulties in NEXAFS-based experiments is to ascertain that the complexes are in direct contact with the surfaces. We show that molecular coverage determination based on the amplitude of the edge-jump of interest is challenging because the latter quantity depends on the substrate. Furthermore, NEXAFS averages the signals of a large number of molecules, which may be in different states. In particular, we highlight that the signal of fragmented molecules is difficult to distinguish from that of intact and functional ones. In contrast, STM allows investigating individual complexes, but the identification of the spin states is at best done indirectly. As quite some of the limits of the techniques are becoming apparent as the field is gaining maturity, their detailed descriptions will be useful for future investigations and for taking a fresh look at earlier reports.
Collapse
|
15
|
Weber B, Dowben PA. Preface to the JPCM Special Issue on Molecular Magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:440201. [PMID: 32721932 DOI: 10.1088/1361-648x/abaa07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Birgit Weber
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstrasse 30, NW I, 95440 Bayreuth, Germany
| | - Peter A Dowben
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| |
Collapse
|