1
|
Yang Y, Wang QH. Exploring the 4d 1analogue of cuprates: theoretical studies on bulk NbF 4and NbF 4monolayer stabilized on MgO (001) plane. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505503. [PMID: 36301710 DOI: 10.1088/1361-648x/ac9dd6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The recent research in infinite-layer nickelates has inspired new effort in finding the cuprate analogs. Here we propose that NbF4, which contains niobium-centered fluorine octahedra, is a promising 4d1analogue of cuprates. Using the density functional theory, we first show that bulk NbF4is in close proximity tod1configuration, with Nb4dxyorbital nearly half-filled. A single band with dominating4dxycharacter crosses the Fermi level, forming a square-like Fermi surface. The intralayer G-type antiferromagnetic (AFM) order is energetically favored and the Coulomb interaction drives the system into an AFM insulator. Next we demonstrate that the NbF4layer can be stabilized on MgO substrate with main electronic and magnetic features retained, offering an alternative route to realize the NbF4-related high-Tcsuperconductors. Furthermore, we derive effective single orbital models for both systems and investigate the electron correlation effects via functional renormalization group. We find that the G-type AFM dominates near half-filling butdx2-y2-wave superconductivity (SC) prevails upon suitable hole/electron doping. Based on the striking similarities between NbF4and cuprates, we suggest that NbF4-related compounds may be exotic candidates for searching new high-Tcsuperconductors.
Collapse
Affiliation(s)
- Yang Yang
- College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
2
|
Nomura Y, Arita R. Superconductivity in infinite-layer nickelates. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:052501. [PMID: 35240593 DOI: 10.1088/1361-6633/ac5a60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The recent discovery of the superconductivity in the doped infinite layer nickelatesRNiO2(R= La, Pr, Nd) is of great interest since the nickelates are isostructural to doped (Ca, Sr)CuO2having superconducting transition temperature (Tc) of about 110 K. Verifying the commonalities and differences between these oxides will certainly give a new insight into the mechanism of highTcsuperconductivity in correlated electron systems. In this paper, we review experimental and theoretical works on this new superconductor and discuss the future perspectives for the 'nickel age' of superconductivity.
Collapse
Affiliation(s)
- Yusuke Nomura
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Zeng S, Li C, Chow LE, Cao Y, Zhang Z, Tang CS, Yin X, Lim ZS, Hu J, Yang P, Ariando A. Superconductivity in infinite-layer nickelate La 1-xCa xNiO 2 thin films. SCIENCE ADVANCES 2022; 8:eabl9927. [PMID: 35179968 PMCID: PMC8856608 DOI: 10.1126/sciadv.abl9927] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/23/2021] [Indexed: 05/25/2023]
Abstract
We report the observation of superconductivity in infinite-layer Ca-doped LaNiO2 (La1-xCaxNiO2) thin films and construct their phase diagram. Unlike the metal-insulator transition in Nd- and Pr-based nickelates, the undoped and underdoped La1-xCaxNiO2 thin films are entirely insulating from 300 K down to 2 K. A superconducting dome is observed at 0.15 < x < 0.3 with weakly insulating behavior at the overdoped regime. Moreover, the sign of the Hall coefficient RH changes at low temperature for samples with a higher doping level. However, distinct from the Nd- and Pr-based nickelates, the RH-sign-change temperature remains at around 35 K as the doping increases, which begs further theoretical and experimental investigation to reveal the role of the 4f orbital to the (multi)band nature of the superconducting nickelates. Our results also emphasize a notable role of lattice correlation on the multiband structures of the infinite-layer nickelates.
Collapse
Affiliation(s)
- Shengwei Zeng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore
| | - Changjian Li
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Er Chow
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore
| | - Yu Cao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Zhaoting Zhang
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore
| | - Chi Sin Tang
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
| | - Zhi Shiuh Lim
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore
| | - Junxiong Hu
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore
| | - Ping Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
| | - Ariando Ariando
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore
| |
Collapse
|
4
|
Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd 0.8Sr 0.2NiO 2 superconductors. Nat Commun 2022; 13:743. [PMID: 35136053 PMCID: PMC8825820 DOI: 10.1038/s41467-022-28390-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Nickel-based complex oxides have served as a playground for decades in the quest for a copper-oxide analog of the high-temperature superconductivity. They may provide clues towards understanding the mechanism and an alternative route for high-temperature superconductors. The recent discovery of superconductivity in the infinite-layer nickelate thin films has fulfilled this pursuit. However, material synthesis remains challenging, direct demonstration of perfect diamagnetism is still missing, and understanding of the role of the interface and bulk to the superconducting properties is still lacking. Here, we show high-quality Nd0.8Sr0.2NiO2 thin films with different thicknesses and demonstrate the interface and strain effects on the electrical, magnetic and optical properties. Perfect diamagnetism is achieved, confirming the occurrence of superconductivity in the films. Unlike the thick films in which the normal-state Hall-coefficient changes signs as the temperature decreases, the Hall-coefficient of films thinner than 5.5 nm remains negative, suggesting a thickness-driven band structure modification. Moreover, X-ray absorption spectroscopy reveals the Ni-O hybridization nature in doped infinite-layer nickelates, and the hybridization is enhanced as the thickness decreases. Consistent with band structure calculations on the nickelate/SrTiO3 heterostructure, the interface and strain effect induce a dominating electron-like band in the ultrathin film, thus causing the sign-change of the Hall-coefficient. Nickelate superconductors attract enormous attention in the field of high-temperature superconductivity. Here the authors report observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors.
Collapse
|
5
|
Abstract
Superconductivity has been discovered recently in infinite-layer nickel-based 112 thin films R1−xAxNiO2 (R = La, Nd, Pr and A = Sr, Ca). They are isostructural to the infinite-layer cuprate (Ca,Sr)CuO2 and are supposed to have a formal Ni 3d9 valence, thus providing a new platform to study the unconventional pairing mechanism of high-temperature superconductors. This important discovery immediately triggers a huge amount of innovative scientific curiosity in the field. In this paper, we try to give an overview of the recent research progress on the newly found superconducting nickelate systems, both from experimental and theoretical aspects. We mainly focus on the electronic structures, magnetic excitations, phase diagrams and superconducting gaps, and finally make some open discussions for possible pairing symmetries in Ni-based 112 systems. The infinite-layer nickel-based 112 thin films R1−xAxNiO2 can host superconductivity up to 15 K R1−xAxNiO2 is a multiband system, in which the short-range antiferromagnetic fluctuations can be detected R1−xAxNiO2 has an unconventional superconducting pairing sate with a robust d-wave gap and a full gap without unified understanding The nickelate system provides a new platform for researching unconventional superconductivity
Collapse
|
6
|
Koren G, Eyal A, Iomin L, Nitzav Y. Observation of Josephson-like Tunneling Junction Characteristics and Positive Magnetoresistance in Oxygen Deficient Nickelate Films of Nd 0.8Sr 0.2NiO 3-δ. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7689. [PMID: 34947282 PMCID: PMC8707323 DOI: 10.3390/ma14247689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Nickelate films have recently attracted broad attention due to the observation of superconductivity in the infinite layer phase of Nd0.8Sr0.2NiO2 (obtained by reducing Sr doped NdNiO3 films) and their similarity to the cuprates high temperature superconductors. Here, we report on the observation of a new type of transport in oxygen poor Nd0.8Sr0.2NiO3-δ films. At high temperatures, variable range hopping is observed while at low temperatures a novel tunneling behavior is found where a Josephson-like tunneling junction characteristic with serial resistance is revealed. We attribute this phenomenon to coupling between superconductive (S) surfaces of the grains in our Oxygen poor films via the insulating (I) grain boundaries, which yields SIS junctions in series with the normal (N) resistance of the grains themselves. The similarity of the observed conductance spectra to the tunneling junction characteristic with Josephson-like current is striking, and seems to support the existence of superconductivity in our samples.
Collapse
Affiliation(s)
- Gad Koren
- Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; (A.E.); (L.I.); (Y.N.)
| | | | | | | |
Collapse
|
7
|
Puphal P, Wu YM, Fürsich K, Lee H, Pakdaman M, Bruin JAN, Nuss J, Suyolcu YE, van Aken PA, Keimer B, Isobe M, Hepting M. Topotactic transformation of single crystals: From perovskite to infinite-layer nickelates. SCIENCE ADVANCES 2021; 7:eabl8091. [PMID: 34860545 PMCID: PMC8641924 DOI: 10.1126/sciadv.abl8091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Topotactic transformations between related crystal structures are a powerful emerging route for the synthesis of novel quantum materials. Whereas most such “soft chemistry” experiments have been carried out on polycrystalline powders or thin films, the topotactic modification of single crystals, the gold standard for physical property measurements on quantum materials, has been studied only sparsely. Here, we report the topotactic reduction of La1−xCaxNiO3 single crystals to La1−xCaxNiO2+δ using CaH2 as the reducing agent. The transformation from the three-dimensional perovskite to the quasi–two-dimensional infinite-layer phase was thoroughly characterized by x-ray diffraction, electron microscopy, Raman spectroscopy, magnetometry, and electrical transport measurements. Our work demonstrates that the infinite-layer structure can be realized as a bulk phase in crystals with micrometer-sized single domains. The electronic properties of these specimens resemble those of epitaxial thin films rather than powders with similar compositions.
Collapse
Affiliation(s)
- Pascal Puphal
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Yu-Mi Wu
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Katrin Fürsich
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Hangoo Lee
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Mohammad Pakdaman
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Jan A N Bruin
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Jürgen Nuss
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Y Eren Suyolcu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Masahiko Isobe
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Matthias Hepting
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|