Panahian Jand S, Nourbakhsh Z, Delle Site L. Nuclear quantum effects in fullerene-fullerene aggregation in water.
Front Chem 2022;
10:1072665. [PMID:
36590278 PMCID:
PMC9799252 DOI:
10.3389/fchem.2022.1072665]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022] Open
Abstract
We studied the effects of the quantum delocalization in space of the hydrogen atoms of water in the aggregation process of two fullerene molecules. We considered a case using a purely repulsive water-fullerene interaction, as such a situation has shown that water-mediated effects play a key role in the aggregation process. This study becomes feasible, at a reduced computational price, by combining the path integral (PI) molecular dynamics (MD) method with a recently developed open-system MD technique. Specifically, only the mandatory solvation shell of the two fullerene molecules was considered at full quantum resolution, while the rest of the system was represented as a mean-field macroscopic reservoir of particles and energy. Our results showed that the quantum nature of the hydrogen atoms leads to a sizable difference in the curve of the free energy of aggregation; that is, that nuclear quantum effects play a relevant role.
Collapse