1
|
Dose evaluation of workers according to operating time and outflow rate in a spent resin treatment facility. NUCLEAR ENGINEERING AND TECHNOLOGY 2021. [DOI: 10.1016/j.net.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Wang R, Luo Z, Tan Q, Wang R, Chen S, Shu J, Chen M, Xiao Z. Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4404-4413. [PMID: 31832937 DOI: 10.1007/s11356-019-06907-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Crystalline silicotitanate (CST) was synthesized via a sol-gel hydrothermal method using Na2Si2O3·9H2O and TiCl4 as silicon and titanium sources. The effects of pH, silicon concentration, hydrothermal temperature, and time on the CST synthesis were studied at a fixed molar ratio of silicon:titanium (0.98:1). Pure nano-CST crystals were synthesized at pH = 12.5, silicon concentration of 5 g L-1, 170 °C for 7 days. The average CST particle size was < 100 nm, with a Sr2+/Cs+ distribution coefficient up to 1.9 × 106 mL g-1/9.4 × 103 mL g-1 under the optimum conditions. In addition, nano-CST absorbed Sr2+/Cs+ over a wide pH range. The nano-CST also displayed a much faster equilibrium time, 4 h, as compared with previous studies. Furthermore, nano-CST adsorption of Sr2+/Cs+ followed a Langmuir adsorption model and was consistent with pseudo-second-order kinetics.
Collapse
Affiliation(s)
- Rong Wang
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhenggang Luo
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Qiuxia Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Rui Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Shuyuan Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| | - Zhengxue Xiao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| |
Collapse
|