1
|
Saeed S, Dai R, Janjua RA, Huang D, Wang H, Wang Z, Ding Z, Zhang Z. Fast-Response Metal-Semiconductor-Metal Junction Ultraviolet Photodetector Based on ZnS:Mn Nanorod Networks via a Cost-Effective Method. ACS OMEGA 2021; 6:32930-32937. [PMID: 34901644 PMCID: PMC8655908 DOI: 10.1021/acsomega.1c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 05/11/2023]
Abstract
In this work, Mn2+-doped ZnS nanorods were synthesized by a facile hydrothermal method. The morphology, structure, and composition of the as-prepared samples were investigated. The temperature-dependent photoluminescence of ZnS:Mn nanorods was analyzed, and the corresponding activation energies were calculated by using a simple two-step rate equation. Mn2+-related orange emission (4T1 → 6A1) demonstrates high stability and is comparatively less affected by the temperature variations than the defect-related emission. A metal-semiconductor-metal junction ultraviolet photodetector based on the nanorod networks has been fabricated by a cost-effective method. The device exhibits visible blindness, superior ultraviolet photodetection with a responsivity of 1.62 A/W, and significantly fast photodetection response with the rise and decay times of 12 and 25 ms, respectively.
Collapse
Affiliation(s)
- Sara Saeed
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| | - Raheel Ahmed Janjua
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
- National
Engineering Research Center for Optical Instruments, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Da Huang
- Department
of Physics, University of Science and Technology
of China, Hefei 230026, China
| | - He Wang
- Department
of Physics, University of Science and Technology
of China, Hefei 230026, China
| | - Zhongping Wang
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| | - Zejun Ding
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Zengming Zhang
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Vakalopoulou E, Buchmaier C, Pein A, Saf R, Fischer RC, Torvisco A, Warchomicka F, Rath T, Trimmel G. Synthesis and characterization of zinc di( O-2,2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfide. Dalton Trans 2020; 49:14564-14575. [PMID: 33107536 DOI: 10.1039/d0dt03065a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metal xanthates are versatile single source precursors for the preparation of various metal sulfides. In this study, we present the synthesis of the two novel zinc xanthate complexes bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(N,N,N',N'-tetramethylethylenediamine)zinc(ii) and bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(pyridine)zinc(ii). A thorough investigation of these compounds revealed distinct differences in their structural and thermal properties. While in the complex containing the chelating tetramethylethylenediamine, the xanthate groups coordinate in a monodentate way, they are bidentally coordinated to the zinc atom in the pyridine containing complex. Both compounds show a two-step thermal decomposition with an onset temperature of 151 °C and 156 °C for the tetramethylethylenediamine and pyridine containing complex, respectively. Moreover, different mechanisms are revealed for the two phases of the decomposition based on high resolution mass spectrometry investigations. By the thermal conversion process nanocrystalline zinc sulfide is produced and the coligand significantly influences its primary crystallite size, which is 4.4 nm using the tetramethylethylenediamine and 11.4 nm using the pyridine containing complex for samples prepared at a temperature of 400 °C.
Collapse
Affiliation(s)
- Efthymia Vakalopoulou
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Christine Buchmaier
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Andreas Pein
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Roland C Fischer
- Institute of Inorganic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Ana Torvisco
- Institute of Inorganic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Fernando Warchomicka
- Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24, 8010, Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Gregor Trimmel
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
3
|
An Q, Meng X, Xiong K, Qiu Y. Self-powered ZnS Nanotubes/Ag Nanowires MSM UV Photodetector with High On/Off Ratio and Fast Response Speed. Sci Rep 2017; 7:4885. [PMID: 28687803 PMCID: PMC5501809 DOI: 10.1038/s41598-017-05176-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
In this study, we design and demonstrate a novel type of self-powered UV photodetectors (PDs) using single-crystalline ZnS nanotubes (NTs) as the photodetecting layer and Ag nanowires (NWs) network as transparent electrodes. The self-powered UV PDs with asymmetric metal-semiconductor-metal (MSM) structure exhibit attractive photovoltaic characteristic at 0 V bias. Device performance analysis reveals that the as-assembled PDs have a high on/off ratio of 19173 and a fast response speed (τr = 0.09 s, τf = 0.07 s) without any external bias. These values are even higher than that of ZnS nanostructures- and ZnS heterostructure-based PDs at a large bias voltage. Besides, its UV sensivity, responsivity and detectivity at self-powered mode can reach as high as 19172, 2.56 A/W and 1.67 × 1010 cm Hz1/2 W-1, respectively. In addition, the photosensing performance of the self-powered UV PDs is studied in different ambient conditions (e.g., in air and vacuum). Moreover, a physical model based on band energy theory is proposed to explain the origin of the self-driven photoresponse characteristic in our device. The totality of the above study signifies that the present self-powered ZnS NTs-based UV nano-photodetector may have promising application in future self-powered optoelectronic devices and integrated systems.
Collapse
Affiliation(s)
- Qinwei An
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Xianquan Meng
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, PR China. .,Hubei Nuclear Solid Physics Key Laboratory, Hubei, 430072, PR China.
| | - Ke Xiong
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Yunlei Qiu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, PR China
| |
Collapse
|