1
|
Turkmen Koc SN, Rezaei Benam S, Aral IP, Shahbazi R, Ulubayram K. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer. Int J Pharm 2024; 655:124057. [PMID: 38552752 DOI: 10.1016/j.ijpharm.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cancer remains one of the major causes of death globally, with one out of every six deaths attributed to the disease. The impact of cancer is felt on psychological, physical, and financial levels, affecting individuals, communities, and healthcare institutions. Conventional cancer treatments have many challenges and inadequacies. Nanomedicine, however, presents a promising solution by not only overcoming these problems but also offering the advantage of combined therapy for treatment-resistant cancers. Nanoparticles specifically engineered for use in nanomedicine can be efficiently targeted to cancer cells through a combination of active and passive techniques, leading to superior tumor-specific accumulation, enhanced drug availability, and reduced systemic toxicity. Among various nanoparticle formulations designed for cancer treatment, gold nanoparticles have gained prominence in the field of nanomedicine due to their photothermal, photodynamic, and immunologic effects without the need for photosensitizers or immunotherapeutic agents. To date, there is no comprehensive literature review that focuses on the photothermal, photodynamic, and immunologic effects of gold nanoparticles. In this review, significant attention has been devoted to examining the parameters pertaining to the structure of gold nanoparticles and laser characteristics, which play a crucial role in influencing the efficacy of photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, this article provides insights into the success of PTT and PDT mediated by gold nanoparticles in primary cancer treatment, as well as the immunological effects of PTT and PDT on metastasis and recurrence, providing a promising strategy for cancer therapy. In summary, gold nanoparticles, with their unique properties, have the potential for clinical application in various cancer therapies, including the treatment of primary cancer, recurrence and metastasis.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye
| | - Sanam Rezaei Benam
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ipek Pınar Aral
- Department of Radiation Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA; Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, USA.
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
2
|
Karabuga M, Erdogan S, Timur SS, Vural I, Çalamak S, Ulubayram K. Development of tumor-specific liposomes containing quantum dots-photosensitizer conjugate used for radiotherapy. J Liposome Res 2022; 32:396-404. [PMID: 35704022 DOI: 10.1080/08982104.2022.2087082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study aims to develop a multifunctional liposomal radiosensitizer to destroy more tumor cells by using lower radiation doses compared to clinically used 6 MV X-ray doses. To achieve this aim, first Chlorine-e6 (Ce6) was covalently bound to functional groups of outer surfaces of quantum dots (QDs) through EDC/NHS reactions. Then, QDs-Ce6 conjugate loaded, nanosized, PEG-coated, and tumor-specific folic acid-modified immunoliposome dispersions were prepared by film method. Enhanced anti-proliferation activity of free and liposomal conjugate against 4T1 (murine breast cancer) cell lines was investigated at different X-ray doses (5, 10, 15, and 20 Gy). As a result, the best radiosensitizer effect was observed at a 5 Gy X-ray dose and it was found that following the X-ray irradiation, immunoliposome dispersions containing QDs-Ce6 conjugate killed 26.8 ± 1.7% more cancer cells than radiation alone.
Collapse
Affiliation(s)
- M Karabuga
- Department of Nanotechnology and Nanomedicine, Graduated School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - S Erdogan
- Department of Nanotechnology and Nanomedicine, Graduated School of Science and Engineering, Hacettepe University, Ankara, Turkey.,Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - S S Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - I Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - S Çalamak
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - K Ulubayram
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Ozcicek I, Aysit N, Cakici C, Aydeger A. The effects of surface functionality and size of gold nanoparticles on neuronal toxicity, apoptosis, ROS production and cellular/suborgan biodistribution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112308. [PMID: 34474859 DOI: 10.1016/j.msec.2021.112308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles are emerging as promising nanomaterials to create nanoscale therapeutic delivery systems. The aim of the study was to synthesis of highly monodisperse and stable gold nanoparticles functionalized with polyethyleneimine (PEI) and polyethylene glycol (PEG), multiparametric investigation of their neuronal toxicological effects and evaluation of the cellular/suborgan biodistribution. Gold nanoparticles (AuNP20 and AuNP50) were synthesized and their surfaces were electrostatically modified by PEI and PEG. Dorsal root ganglion (DRG) sensory neurones were isolated from BALB/c mice. Cell viability, apoptosis and ROS production were evaluated in vitro. Cellular and suborgan biodisribution of the AuNPs were investigated using inductively coupled plasma mass spectrometry (ICP-MS) technique. PEI and PEG surface coating increased both biocompatibility and biodistribution of the AuNPs. ICP-MS measurements showed the presence of gold in liver, spleen, kidney, heart, blood and brain within a 30 days period. The size and surface chemistry of the AuNPs are important parameters for potential nanoteranostic applications in the future studies.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Nese Aysit
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Asel Aydeger
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
4
|
Metal Nanoparticles Formation from Nickel Hydroxide. MATERIALS 2020; 13:ma13204689. [PMID: 33096781 PMCID: PMC7589774 DOI: 10.3390/ma13204689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
In this study, the mechanism of nickel nanoparticle formation from its hydroxide was analyzed. Metallic nickel nanoparticles were obtained through the hydroxide’s reduction under hydrogen. Nickel hydroxides were produced from nickel (II) nitrate hexahydrate and NaOH by deposition under various initial conditions. The influence of washing treatment on the dispersion of obtained nickel powders was studied. The washing procedure of precipitates was carried out by centrifugation, ultrasonic treatment, and decantation. X-ray diffractometry, transmission electron microscopy, low-temperature nitrogen adsorption, infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy methods were used for nanoparticle characterization. Based on the resulting data, a model of the Ni(OH)2 aggregate structure after deposition was proposed. The number of nickel hydroxide particles required to form one nickel nanoparticle was estimated, and a model of its formation was proposed.
Collapse
|
5
|
Sen GT, Ozkemahli G, Shahbazi R, Erkekoglu P, Ulubayram K, Kocer-Gumusel B. The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage. Int J Toxicol 2020; 39:328-340. [DOI: 10.1177/1091581820927646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles (AuNPs) have been widely used in many biological and biomedical applications. In this regard, their surface modification is of paramount importance in order to increase their cellular uptake, delivery capability, and optimize their distribution inside the body. The aim of this study was to examine the effects of AuNPs on cytotoxicity, oxidant/antioxidant parameters, and DNA damage in HepG2 cells and investigate the potential toxic effects of different surface modifications such as polyethylene glycol (PEG) and polyethyleneimine (PEI; molecular weights of 2,000 (low molecular weight [LMW]) and 25,000 (high molecular weight [HMW]). The study groups were determined as AuNPs, PEG-coated AuNPs (AuNPs/PEG), low-molecular weight polyethyleneimine-coated gold nanoparticles (AuNPs/PEI LMW), and high-molecular weight polyethyleneimine-coated gold nanoparticles (AuNPs/PEI HMW). After incubating HepG2 cells with different concentrations of nanoparticles for 24 hours, half maximal inhibitory concentrations (the concentration that kills 50% of the cells) were determined as 166.77, 257.73, and 198.44 µg/mL for AuNPs, AuNPs/PEG, and AuNPs/PEI LMW groups, respectively. Later, inhibitory concentration 30 (IC30, the concentration that kills 30% of the cells) doses were calculated, and further experiments were performed on cells that were exposed to IC30 doses. Although intracellular reactive oxygen species levels significantly increased in all nanoparticles, AuNPs as well as AuNPs/PEG did not cause any changes in oxidant/antioxidant parameters. However, AuNPs/PEI HMW particularly induced oxidative stress as evidence of alterations in lipid peroxidation and protein oxidation. These results suggest that at IC30 doses, AuNPs do not affect oxidative stress and DNA damage significantly. Polyethylene glycol coating does not have an impact on toxicity, however PEI coating (particularly HMW) can induce oxidative stress.
Collapse
Affiliation(s)
- Gamze Tilbe Sen
- Biomedical Engineering Program, Başkent University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Reza Shahbazi
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Pınar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Graduate Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
6
|
Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends Biotechnol 2019; 38:264-279. [PMID: 31635894 DOI: 10.1016/j.tibtech.2019.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
The past few years have seen significant developments in the chemistry and potential biological applications of 2D materials. This review focuses on recent advances in the biotechnological and biomedical applications of MXenes, which are 2D carbides, nitrides, and carbonitrides of transition metals. Nanomaterials based on MXenes can be used as therapeutics for anticancer treatment, in photothermal therapy as drug delivery platforms, or as nanodrugs without any additional modification. Furthermore, we discuss the potential use of these materials in biosensing and bioimaging, including magnetic resonance and photoacoustic imaging techniques. Finally, we present the most significant examples of the use of MXenes as efficient agents for environmental and antimicrobial treatments, as well as a brief discussion of their future prospects and challenges.
Collapse
|
7
|
Shahbazi R, Sghia-Hughes G, Reid JL, Kubek S, Haworth KG, Humbert O, Kiem HP, Adair JE. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. NATURE MATERIALS 2019; 18:1124-1132. [PMID: 31133730 PMCID: PMC6754292 DOI: 10.1038/s41563-019-0385-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 05/09/2023]
Abstract
Ex vivo CRISPR gene editing in haematopoietic stem and progenitor cells has opened potential treatment modalities for numerous diseases. The current process uses electroporation, sometimes followed by virus transduction. While this complex manipulation has resulted in high levels of gene editing at some genetic loci, cellular toxicity was observed. We have developed a CRISPR nanoformulation based on colloidal gold nanoparticles with a unique loading design capable of cellular entry without the need for electroporation or viruses. This highly monodispersed nanoformulation avoids lysosomal entrapment and localizes to the nucleus in primary human blood progenitors without toxicity. Nanoformulation-mediated gene editing is efficient and sustained with different CRISPR nucleases at multiple loci of therapeutic interest. The engraftment kinetics of nanoformulation-treated primary cells in humanized mice are better relative to those of non-treated cells, with no differences in differentiation. Here we demonstrate non-toxic delivery of the entire CRISPR payload into primary human blood progenitors.
Collapse
Affiliation(s)
- Reza Shahbazi
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jack L Reid
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sara Kubek
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kevin G Haworth
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olivier Humbert
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer E Adair
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Demir US, Shahbazi R, Calamak S, Ozturk S, Gultekinoglu M, Ulubayram K. Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation. J Biomed Mater Res A 2018; 106:1604-1613. [PMID: 29427534 DOI: 10.1002/jbm.a.36365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/13/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Neurite outgrowth and elongation of neural cells is the most important subject that is considered in nerve tissue engineering. In this regard, aligned nanofibers have taken much attention in terms of providing guidance for newly outgrown neurites. The main objective of this study was to fabricate aligned polyurethane nanofibers by electrospinning process and decorate them with gold nanoparticles to further investigate the synergistic effects of nanotopography, biological nerve growth factor (NGF) and electrical stimulations on neurite outgrowth and elongation of pheochromocytoma (PC-12) model cells. In this regard, smooth and uniform aligned polyurethane nanofibers with the average diameter of 519 ± 56 nm were fabricated and decorated with the gold nanoparticles with the average diameter of ∼50 nm. PC-12 cells were cultured on the various nanofiber surfaces inside the bio-mimetic bioreactor system and exposed either to NGF alone or combination of NGF and electrical stimulation. It was found that 50 ng/mL NGF concentration is an optimal value for the stimulation of neurite outgrowth. After 4 days of culture under 100 mV, 10 ms electrical stimulation in 1 h/day period it was found that the gold nanoparticle decorated aligned polyurethane nanofibers increased the neurite outgrowth and elongation more with the combinational NGF and electrical stimulation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1604-1613, 2018.
Collapse
Affiliation(s)
- Ulku Selcen Demir
- Department of Bioengineering, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey
| | - Reza Shahbazi
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey
| | - Semih Calamak
- Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Sukru Ozturk
- Department of Bioengineering, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey.,Bioengineering Department, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Merve Gultekinoglu
- Department of Bioengineering, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Kezban Ulubayram
- Department of Bioengineering, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey.,Department of Nanotechnology and Nanomedicine, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey.,Department of Polymer Science and Technology, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, 06640, Turkey
| |
Collapse
|
9
|
Shahbazi R, Asik E, Kahraman N, Turk M, Ozpolat B, Ulubayram K. Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer. Nanomedicine (Lond) 2017; 12:1961-1973. [DOI: 10.2217/nnm-2017-0081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: In this study, we aimed to therapeutically target eukaryotic elongation factor 2 kinase (eEF-2K) in an in vivo triple-negative breast cancer (TNBC) tumor model. Materials & methods: We synthesized a highly monodisperse nanoformulation using polyethylenimine-modified gold nanoparticles (AuNP-PEI) as siRNA delivery vehicle and evaluated gene downregulation. Results: We found that AuNP-PEI/eEF-2K nanoformulation was highly effective for in vitro and in vivo gene downregulation and showed remarkable antitumor efficacy that was associated with eEF-2K knockdown, inhibition of Src and MAPK-ERK signaling pathways in a TNBC orthotopic tumor model. Conclusion: Our study suggests that eEF-2K plays an important role in TNBC tumorigenesis and its inhibition by AuNP-PEI/eEF-2K siRNA-based nanotherapeutics may be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Reza Shahbazi
- Department of Nanotechnology & Nanomedicine, Hacettepe University, Ankara, Turkey
| | - Elif Asik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mustafa Turk
- Department of Bioengineering, Kırıkkale University, Kırıkkale, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference & Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kezban Ulubayram
- Department of Nanotechnology & Nanomedicine, Hacettepe University, Ankara, Turkey
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|