1
|
Lin Y, Cao Y, Yao Q, Chai OJH, Xie J. Engineering Noble Metal Nanomaterials for Pollutant Decomposition. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04258] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzheng Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
2
|
Ye H, Song L, Zhang F, Li J, Su Z, Zhang Y. Highly Sensitive Electrochemical Detection of Folic Acid by Using a Hollow Carbon Nanospheres@molybdenum Disulfide Modified Electrode. ANAL SCI 2020; 37:575-580. [PMID: 33012758 DOI: 10.2116/analsci.20p297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a nutrient in body functions, folic acid (FA) plays a very important role for human health, and thus developing a highly sensitive method for its determination is of great significance. In the present work, carbon hollow nanospheres decorated with molybdenum disulfide nanosheets (CHN@MoS2) nanomaterials were produced through a simple method and adopted to modify a glassy carbon electrode for assembling a highly sensitive electrochemical sensor of FA. After characterizing the prepared nanomaterials using scanning-/transmission-electron microscopy and Raman spectra, as well as optimizing various testing conditions, including the pH value of the buffer solution, the accumulation time and amount of nanomaterials on electrode surface, and the electrochemical determination of FA was carried out using a CHN@MoS2 electrode. Owing to the coordinative advantages from CHN and MoS2, the results show that CHN@MoS2 exhibits excellent sensing responses for FA, and it has a wide linear range from 0.08 to 10.0 μM coupled with a low detection limit of 0.02 μM. Finally, the proposed method for FA detection was successfully applied in human urine analysis. The obtained results are satisfactory, revealing that the developed method based on CHN@MoS2 nanomaterials has important applications for FA determination.
Collapse
Affiliation(s)
- Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Liang Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.,Department of Translational Medicine, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences
| | - Fuhui Zhang
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Juan Li
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Zhiying Su
- Department of Obstetrics and gynecology, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.,Department of Translational Medicine, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| |
Collapse
|
3
|
Fabrication of S-MoSe2/NSG/Au/MIPs imprinted composites for electrochemical detection of dopamine based on synergistic effect. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Sha R, Bhattacharyya TK. MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136370] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Han Z, Tang Z, Jiang K, Huang Q, Meng J, Nie D, Zhao Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS 2-Au) for multiplex detection of mycotoxins. Biosens Bioelectron 2019; 150:111894. [PMID: 31761484 DOI: 10.1016/j.bios.2019.111894] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Multiple mycotoxin contamination has posed health risks in the area of food safety. In this study, co-reduced molybdenum disulfide and gold nanoparticles (rMoS2-Au) were designed and used for the first time as an efficient platform endowing electrochemical electrodes with superior electron transfer rates, large surface areas and strong abilities to firmly couple with large amounts of different aptamers. After further modification with thionine (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S), a platform enabling sensitive, selective and simultaneous determination of two important mycotoxins, zearalenone (ZEN) and fumonisin B1 (FB1), was achieved. The established aptasensor showed excellent linear relationships (R2 > 0.99) when ZEN and FB1 concentrations were in the range of 1 × 10-3-10 ng mL-1 and 1 × 10-3-1 × 102 ng mL-1, respectively. High sensitivity of ZEN and FB1 with a limit of detection as low as 5 × 10-4 ng mL-1 was obtained with excellent selectivity and stability. The effectiveness of the aptasensor was verified in real maize samples, and satisfactory recoveries were attained. The established platform could be easily expanded to other aptamer-based multiplex screening protocols in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhanmin Tang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Keqiu Jiang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
6
|
Madhuvilakku R, Alagar S, Mariappan R, Piraman S. Glassy carbon electrodes modified with reduced graphene oxide-MoS 2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal Chim Acta 2019; 1093:93-105. [PMID: 31735219 DOI: 10.1016/j.aca.2019.09.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The detrimental effect of (NO2-) on environment, a sensitive and selective detection of nitrite (NO2-) ions with point-to-care device is need to be fabricated. Herein, we report the non-enzymatic nitrite sensor using a novel reduced graphene oxide/molybdenum disulfide/poly (3, 4-ethylene dioxythiophene) (rGO/MoS2/PEDOT) nanocomposite electrode. The rGO/MoS2/PEDOT nanocomposite was synthesized using facile and cost-effective hydrothermal and polymerization approaches. The characteristics of rGO-MoS2-PEDOT nanocomposite was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analyses. The rGO-MoS2-PEDOT nanocomposite modified glassy carbon electrode (GCE) was directly used for electrocatalytic detection of nitrite ions present in the solution. TEM images show the PEDOT nanoparticles with an average size of 100-120 nm are uniformly covered on the outer face of rGO-MoS2 nanosheets. The interaction between the PEDOT and rGO-MoS2 is evidenced in the FTIR, XRD and XPS studies, and they produced synergistic effect, resulting enhanced electrocatalytic performance activity towards oxidation of nitrite. Under optimized conditions, the fabricated electrode exhibited remarkably good sensitivity (874.19 μA μM-1 cm-2), low detection limit (LOD) (0.059 μM, S/N = 3), wide linear range (0.001-1 mM) of nitrite with desirable selectivity, long-term stability and reproducibility. Furthermore, the practical feasibility of the fabricated sensor is validated by the successful detection of nitrite ion in some water and milk samples with excellent correlation. Thus, feasible easier synthesis method was adopted first time to fabricate rGO-MoS2-PEDOT nanocomposite nitrite sensor in the milk and water samples with enhanced selectivity, sensitivity and LOD.
Collapse
Affiliation(s)
- Rajesh Madhuvilakku
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Srinivasan Alagar
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Ramalakshmi Mariappan
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Shakkthivel Piraman
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
7
|
Qin L, Zeng G, Lai C, Huang D, Zhang C, Cheng M, Yi H, Liu X, Zhou C, Xiong W, Huang F, Cao W. Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:93-116. [PMID: 30359806 DOI: 10.1016/j.scitotenv.2018.10.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
With the increasing requirement of efficient organic transformations on the basic concept of Green Sustainable Chemistry, the development of highly efficient catalytic reaction system is greatly desired. In this case, gold (Au)-based nanocatalysts are promising candidates for catalytic reaction, especially for the reduction of nitroaromatics. They have attracted wide attention and well developed in the application of nitroaromatics reduction because of the unique properties compared with that of other conventional metal-based catalysts. With this respect, this review proposes recent trends in the application of Au nanocatalysts for efficient reduction process of nitroaromatics. Some typical approaches are compared and discussed to guide the synthesis of highly efficient Au nanocatalysts. The mechanism on the use of H2 and NaBH4 solution as the source of hydrogen is compared, and that proposed under light irradiation is discussed. The high and unique catalytic activity of some carriers, such as oxides and carbons-based materials, based on different sizes, structures, and shapes of supported Au nanocatalysts for nitroaromatics reduction are described. The catalytic performance of Au combining with other metal nanoparticles by alloy or doping, like multi-metal nanoparticles system, is further discussed. Finally, a short discussion is introduced to compare the catalysis with other metallic nanocatalysts.
Collapse
Affiliation(s)
- Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Fanglong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| |
Collapse
|
8
|
|
9
|
Pal A, Jana TK, Roy T, Pradhan A, Maiti R, Choudhury SM, Chatterjee K. MoS2-TiO2Nanocomposite with Excellent Adsorption Performance and High Antibacterial Activity. ChemistrySelect 2018. [DOI: 10.1002/slct.201702618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arnab Pal
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 India
| | - Tushar K. Jana
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 India
| | - Tamanna Roy
- Dept of Human Physiology with Community Health; Vidyasagar University; Midnapore - 721102 India
| | - Ananya Pradhan
- Dept of Human Physiology with Community Health; Vidyasagar University; Midnapore - 721102 India
| | - Ramaprasad Maiti
- Department of Electronics; Derozio Memorial College; Rajarhat Road Kolkata - 700 136 India
| | - Sujata M. Choudhury
- Dept of Human Physiology with Community Health; Vidyasagar University; Midnapore - 721102 India
| | - Kuntal Chatterjee
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 India
| |
Collapse
|