1
|
Dillen A, Scarpellini C, Daenen W, Driesen S, Zijlstra P, Lammertyn J. Integrated Signal Amplification on a Fiber Optic SPR Sensor Using Duplexed Aptamers. ACS Sens 2023; 8:811-821. [PMID: 36734337 DOI: 10.1021/acssensors.2c02388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Throughout the past decades, fiber optic surface plasmon resonance (FO-SPR)-based biosensors have proven to be powerful tools for both the characterization of biomolecular interactions and target detection. However, as FO-SPR signals are generally related to the mass that binds to the sensor surface, multistep processes and external reagents are often required to obtain significant signals for low molecular weight targets. This increases the time, cost, and complexity of the respective bioassays and hinders continuous measurements. To overcome these requirements, in this work, cis-duplexed aptamers (DAs) were implemented on FO-SPR sensors, which underwent a conformational change upon target binding. This induced a spatial redistribution of gold nanoparticles (AuNPs) upon specific target binding and resulted in an amplified and concentration-dependent signal. Importantly, the AuNPs were covalently conjugated to the sensor, so the principle does not rely on multistep processes or external reagents. To implement this concept, first, the thickness of the gold fiber coating was adapted to match the resonance conditions of the surface plasmons present on the FO-SPR sensors with those on the AuNPs. As a result, the signal obtained due to the spatial redistribution of the AuNPs was amplified by a factor of 3 compared to the most commonly used thickness. Subsequently, the cis-DAs were successfully implemented on the FO-SPR sensors, and it was demonstrated that the DA-based FO-SPR sensors could specifically and quantitatively detect an ssDNA target with a detection limit of 230 nM. Furthermore, the redistribution of the AuNPs was proven to be reversible, which is an important prerequisite for continuous measurements. Altogether, the established DA-based FO-SPR bioassay holds much promise for the detection of low molecular weight targets in the future and opens up possibilities for FO-SPR-based continuous biosensing.
Collapse
Affiliation(s)
- Annelies Dillen
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Claudia Scarpellini
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Woud Daenen
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Seppe Driesen
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| | - Peter Zijlstra
- Department of Applied Physics─Molecular Plasmonics, Eindhoven University of Technology, De Rondom 70, 5612 APEindhoven, The Netherlands
| | - Jeroen Lammertyn
- Department of Biosystems─Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001Leuven, Belgium
| |
Collapse
|
2
|
Park JH, Cho YW, Kim TH. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. BIOSENSORS 2022; 12:180. [PMID: 35323450 PMCID: PMC8946561 DOI: 10.3390/bios12030180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
The advancement of science and technology has led to the recent development of highly sensitive pathogen biosensing techniques. The effective treatment of pathogen infections requires sensing technologies to not only be sensitive but also render results in real-time. This review thus summarises the recent advances in optical surface plasmon resonance (SPR) sensor technology, which possesses the aforementioned advantages. Specifically, this technology allows for the detection of specific pathogens by applying nano-sized materials. This review focuses on various nanomaterials that are used to ensure the performance and high selectivity of SPR sensors. This review will undoubtedly accelerate the development of optical biosensing technology, thus allowing for real-time diagnosis and the timely delivery of appropriate treatments as well as preventing the spread of highly contagious pathogens.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea; (J.-H.P.); (Y.-W.C.)
| |
Collapse
|
3
|
Dillen A, Mohrbacher A, Lammertyn J. A Versatile One-Step Competitive Fiber Optic Surface Plasmon Resonance Bioassay Enabled by DNA Nanotechnology. ACS Sens 2021; 6:3677-3684. [PMID: 34633181 DOI: 10.1021/acssensors.1c01447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fiber optic surface plasmon resonance (FO-SPR)-based biosensors have emerged as powerful tools for biomarker detection due to their ability for real-time analysis of biomolecular interactions, cost-effectiveness, and user-friendliness. However, as (FO-)SPR signals are determined by the mass of the target molecules, the detection of low-molecular-weight targets remains challenging and currently requires tedious labeling and preparation steps. Therefore, in this work, we established a new concept for low-molecular-weight target detection by implementing duplexed aptamers on an FO-SPR sensor. In this manner, we enabled one-step competitive detection and could achieve significant signals, independent of the weight of the target molecules, without requiring labeling or preprocessing steps. This was demonstrated for the detection of a small molecule (ATP), protein (thrombin), and ssDNA target, thereby reaching detection limits of 72 μM, 36 nM, and 30 nM respectively and proving the generalizability of the proposed bioassay. Furthermore, target detection was successfully achieved in 10-fold diluted plasma, which demonstrated the applicability of the assay in biologically relevant matrices. Altogether, the developed one-step competitive FO-SPR bioassay opens up possibilities for the detection of low-molecular-weight targets in a fast and straightforward manner.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems − Biosensors Group, Willem de Croylaan 42, Box 2428, Leuven 3001, Belgium
| | - Aurélie Mohrbacher
- KU Leuven, Department of Biosystems − Biosensors Group, Willem de Croylaan 42, Box 2428, Leuven 3001, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems − Biosensors Group, Willem de Croylaan 42, Box 2428, Leuven 3001, Belgium
| |
Collapse
|
4
|
Alonso-Murias MDC, Monzón-Hernández D, Gravagnuolo AM, Márquez S, Giardina P, Morales-Narváez E. Graphene oxide biohybrid layer enhances sensitivity and anticorrosive properties in refractive index sensor. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/abfa78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Graphene-based materials are capable of enhancing the refractometric response of prism- and optical fiber-based surface plasmon resonance (SPR) sensors; however, complicated multistep and time-consuming attaching processes could limit their practical applications. Herein, for the first time, we demonstrate the immobilization of graphene oxide (GO) submicrometric sheets onto the surface of a gold-coated single-mode fiber using a coating of fungal self-assembling proteins, the hydrophobins (HFBs), as an adhesive nanolayer. Hetero-core fiber tip SPR structures used in this study, consisting of a mirrored multimode–single-mode fiber structure coated with different thin layers (a chromium layer of 3 nm and a gold layer of 30 nm on top) exhibited a refractive index sensitivity (SRI) of 1842 nm RIU−1 (RIU: refractive index unit) at a refractive index (RI) of 1.36. Self-assembly of GO over the SPR fiber tip via HFB, offered an enhancement of up to 20% in the SRI. Moreover, this HFB-GO coating prevented degradation of the Al thin film mirror caused by corrosive salt-water solutions. The process is very simple, harmless, rapid (around 15 min) and scalable, as it is mostly based on one plasma treatment, which can be performed in large chambers and two dip coating steps, in liquid baths. All these features make the use of self-assembled bio/non-bio hybrid coating a green industrial method to improve the performance of SPR fiber biosensors, if compared with traditional chemical methods. Materials applied in this technology, fungal proteins and derivatives of graphite, are sustainable and largely available.
Collapse
|
5
|
Noor N, Mutalik S, Younas MW, Chan CY, Thakur S, Wang F, Yao MZ, Mou Q, Leung PHM. Durable Antimicrobial Behaviour from Silver-Graphene Coated Medical Textile Composites. Polymers (Basel) 2019; 11:E2000. [PMID: 31816952 PMCID: PMC6961056 DOI: 10.3390/polym11122000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
Silver nanoparticle (AgNP) and AgNP/reduced graphene oxide (rGO) nanocomposite impregnated medical grade polyviscose textile pads were formed using a facile, surface-mediated wet chemical solution-dipping process, without further annealing. Surfaces were sequentially treated in situ with a sodium borohydride (NaBH4) reducing agent, prior to formation, deposition, and fixation of Ag nanostructures and/or rGO nanosheets throughout porous non-woven (i.e., randomly interwoven) fibrous scaffolds. There was no need for stabilising agent use. The surface morphology of the treated fabrics and the reaction mechanism were characterised by Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-Vis) absorption spectra, X-ray diffraction (XRD), Raman spectroscopy, dynamic light scattering (DLS) energy-dispersive X-ray analysis (EDS), and scanning electron microscopic (SEM). XRD and EDS confirmed the presence of pure-phase metallic silver. Variation of reducing agent concentration allowed control over characteristic plasmon absorption of AgNP while SEM imaging, EDS, and DLS confirmed the presence of and dispersion of Ag particles, with smaller agglomerates existing with concurrent rGO use, which also coincided with enhanced AgNP loading. The composites demonstrated potent antimicrobial activity against the clinically relevant gram-negative Escherichia coli (a key causative bacterial agent of healthcare-associated infections; HAIs). The best antibacterial rate achieved for treated substrates was 100% with only a slight decrease (to 90.1%) after 12 equivalent laundering cycles of standard washing. Investigation of silver ion release behaviours through inductively coupled plasmon optical emission spectroscopy (ICP-OES) and laundering durability tests showed that AgNP adhesion was aided by the presence of the rGO host matrix allowing for robust immobilisation of silver nanostructures with relatively high stability, which offered a rapid, convenient, scalable route to conformal NP-decorated and nanocomposite soft matter coatings.
Collapse
Affiliation(s)
- Nuruzzaman Noor
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Suhas Mutalik
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Muhammad Waseem Younas
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Cheuk Ying Chan
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Suman Thakur
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Faming Wang
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Mian Zhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (M.Z.Y.); (Q.M.); (P.H.-m.L.)
| | - Qianqian Mou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (M.Z.Y.); (Q.M.); (P.H.-m.L.)
| | - Polly Hang-mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (M.Z.Y.); (Q.M.); (P.H.-m.L.)
| |
Collapse
|
6
|
Kant R. Surface plasmon resonance based fiber-optic nanosensor for the pesticide fenitrothion utilizing Ta 2O 5 nanostructures sequestered onto a reduced graphene oxide matrix. Mikrochim Acta 2019; 187:8. [PMID: 31797057 DOI: 10.1007/s00604-019-4002-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/03/2019] [Indexed: 02/03/2023]
Abstract
A surface plasmon resonance study was carried out for the identification and determination of the organophosphate pesticide fenitrothion via an optical fiber sensor. A thin layer of silver was deposited on the unclad core of silica optical fiber for plasmon generation. This was followed by the deposition of a sensing surface comprising a layer of tantalum(V) oxide nanoparticles sequestered in a nano-scaled matrix of reduced graphene oxide. The sensing mechanism is due to the interaction of fenitrothion with the silver film which leads to a change in refractive index.. Characterized by a wavelength interrogation scheme, the fiber-optic sensor exhibited a red shift equalling 56 nm corresponding to fenitrothion concentration in the range 0.25-4 μM including the blank solution. The spectral sensitivity is 24 nm μM-1, the limit of detection is 38 nM, and the response time is as short as 23 s. The sensor is selective, repeatable and works at ambient temperature. Graphical abstractSchematic representation of the sensing mechanism of an SPR based fiber-optic fenitrothion sensor utilizing modification in refractive index of sensing surface comprising of tantalum(V) oxide (Ta2O5) nanoparticles embedded in reduced graphene oxide (rGO) caused by interaction with fenitrothion entities.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Petrucci R, Chiarotto I, Mattiello L, Passeri D, Rossi M, Zollo G, Feroci M. Graphene Oxide: A Smart (Starting) Material for Natural Methylxanthines Adsorption and Detection. Molecules 2019; 24:E4247. [PMID: 31766549 PMCID: PMC6930464 DOI: 10.3390/molecules24234247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to - interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10-10 mol L-1 and 1.8 × 10-9 mol L-1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.
Collapse
Affiliation(s)
- Rita Petrucci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| | | | | | | | | | | | - Marta Feroci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| |
Collapse
|
8
|
Patil PO, Pandey GR, Patil AG, Borse VB, Deshmukh PK, Patil DR, Tade RS, Nangare SN, Khan ZG, Patil AM, More MP, Veerapandian M, Bari SB. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens Bioelectron 2019; 139:111324. [PMID: 31121435 DOI: 10.1016/j.bios.2019.111324] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
Surface plasmon resonance (SPR) offers exceptional advantages such as label-free, in-situ and real-time measurement ability that facilitates the study of molecular or chemical binding events. Besides, SPR lacks in the detection of various binding events, particularly involving low molecular weight molecules. This drawback ultimately resulted in the development of several sensitivity enhancement methodologies and their application in the various area. Among graphene materials, graphene-based nanocomposites stands out owing to its significant properties such as strong adsorption of molecules, signal amplification by optical, high carrier mobility, electronic bridging, ease of fabrication and therefore, have established as an important sensitivity enhancement substrate for SPR. Also, graphene-based nanocomposites could amplify the signal generated by plasmon material and increase the sensitivity of molecular detection up to femto to atto molar level. This review focuses on the current important developments made in the potential research avenue of SPR and fiber optics based SPR for chemical and biological sensing. Latest trends and challenges in engineering and applications of graphene-based nanocomposites enhanced sensors for detecting minute and low concentration biological and chemical analytes are reviewed comprehensively. This review may aid in futuristic designing approaches and application of grapheneous sensor platforms for sensitive plasmonic nano-sensors.
Collapse
Affiliation(s)
- Pravin O Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India.
| | - Gaurav R Pandey
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Ashwini G Patil
- R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| | - Vivek B Borse
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Prashant K Deshmukh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Dilip R Patil
- R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| | - Rahul S Tade
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Zamir G Khan
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Arun M Patil
- R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| | - Mahesh P More
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Murugan Veerapandian
- Council of Scientific and Industrial Research-Central Electrochemical Research Institute, Karaikudi-630003, Tamilnadu, India
| | - Sanjay B Bari
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| |
Collapse
|
9
|
Kaushik S, Tiwari UK, Pal SS, Sinha RK. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS 2) nanosheets. Biosens Bioelectron 2018; 126:501-509. [PMID: 30476881 DOI: 10.1016/j.bios.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/29/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
The molybdenum disulfide (MoS2) nanosheets functionalized fiber optic surface plasmon resonance (SPR) immunosensor has been reported for the sensitive detection of Escherichia coli (E. coli). The MoS2 nanosheets were prepared by chemical exfoliation method. The synthesised nanostructures were characterized for their structural, morphological and optical properties. The E. coli monoclonal antibodies were successfully immobilized on the MoS2 functionalized sensing platform via hydrophobic interactions. An alternative method simplifying the antibodies immobilization process by functionalization of 2D nanomaterial (MoS2 nanosheets) for rapid (~15 mins) bacterial quantification is presented in this study. The immunosensor uses wavelength interrogation method and a strong linear relationship (R2 = 0.994) was observed between spectral response of immunosensor and different concentration of E. coli. The nonspecificity and cross-reactivity studies of the developed immunosensor were investigated with detection of Salmonella Typhimurium and Staphylococcus aureus. To demonstrate the practical application, spiked samples of water and orange juice were analysed with acceptable recovery results. The label-free immunosensor exhibits better performance, detection limit (94 CFU/mL), high sensitivity (2.9 nm/1000 CFU mL-1; 3135 nm/RIU) and profound specificity as compared to conventional fiber optic SPR sensor (detection limit: 391 CFU/mL, sensitivity: 0.6 nm/1000 CFU mL-1; 1646 nm/RIU). This sensing platform shows promising applications in regular water and food quality monitoring for various pathogenic microorganisms.
Collapse
Affiliation(s)
- Siddharth Kaushik
- Advanced Materials and Sensors (V 4), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India; Academy of Scientific and Innovative Research, CSIR-CSIO Campus, Chandigarh 160030, India
| | - Umesh K Tiwari
- Advanced Materials and Sensors (V 4), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India; Academy of Scientific and Innovative Research, CSIR-CSIO Campus, Chandigarh 160030, India
| | - Sudipta S Pal
- Advanced Materials and Sensors (V 4), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India; Academy of Scientific and Innovative Research, CSIR-CSIO Campus, Chandigarh 160030, India
| | - Ravindra K Sinha
- Advanced Materials and Sensors (V 4), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India; TIFAC-Centre of Relevance and Excellence in Fiber Optics and Optical Communication, Department of Applied Physics, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|