1
|
Zhang H, Sun Y, Wang S, Wang Q, Shang Y, Lee S, Zhang L, Deng L, Yang Y. Synergistic RuCo atomic pair with enhanced activity toward levulinic acid hydrogenation. J Colloid Interface Sci 2025; 681:281-291. [PMID: 39608029 DOI: 10.1016/j.jcis.2024.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Development of efficient metal-based catalysts is of great importance for levulinic acid (LA) hydrogenation to γ-valerolactone (GVL). The widely employed Ru-based catalysts are advantageous for H2 dissociation, however, the steric hindrance of large Ru particles hampers their coordination to CO moiety in LA, and thereby decreasing the activity. Herein, we report a Ru1Co1NC double single-atom catalyst (DSAC) with synergistic Ru and Co atomic pairs for LA hydrogenation into GVL. The Ru and Co doped zeolitic imidazole frameworks (RuCo-doped ZIF-8) precursor was rationally designed ((Ru + Co)/(Zn + Ru + Co) = 2 at.%), where the Zn node spatially isolates Ru and Co species, expanding the adjacent RuCo distance and facilitating the formation of the RuCo atomic pair upon pyrolysis, with each atom coordinated with three nitrogen atoms (N3Ru1Co1N3). The Ru1Co1NC catalyst exhibits outstanding catalytic activity, with a turnover frequency (TOF) of 1980 h-1, surpassing previously reported Ru-based catalysts. Experimental investigation and density functional theory (DFT) calculations reveal that the electron-rich Ru induced by less electronegative Co facilitates H2 dissociation, while atomic Ru in dual-atomic pairs promotes CO activation, Ru and Co atomic pairs synergistically enhancing LA conversion to GVL. This research will shed light on the precise control of active sites at atomic scale, and also provides a new concept for designing high-performance Ru-based catalysts towards LA hydrogenation to GVL.
Collapse
Affiliation(s)
- Haonan Zhang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yuhang Sun
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Shuo Wang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Qiyuan Wang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yuxiang Shang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lei Deng
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ying Yang
- School of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
2
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
4
|
Doherty S, Knight JG, Backhouse T, Tran TST, Paterson R, Stahl F, Alharbi HY, Chamberlain TW, Bourne RA, Stones R, Griffiths A, White JP, Aslam Z, Hardare C, Daly H, Hart J, Temperton RH, O'Shea JN, Rees NH. Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphine oxide-decorated polymer immobilized ionic liquid stabilized RuNPs catalyse the hydrogenation of aryl ketones with remarkable selectivity for the CO bond, complete hydrogenation to the cyclohexylalcohol and hydrogenation of levulinic acid to γ-valerolactone.
Collapse
Affiliation(s)
- S. Doherty
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - J. G. Knight
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. Backhouse
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. S. T. Tran
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - R. Paterson
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - F. Stahl
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - H. Y. Alharbi
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. W. Chamberlain
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - R. A. Bourne
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - R. Stones
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - A. Griffiths
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - J. P. White
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - Z. Aslam
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - C. Hardare
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, The Mill, Sackville Street Campus, Manchester, M13 9PL, UK
| | - H. Daly
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, The Mill, Sackville Street Campus, Manchester, M13 9PL, UK
| | - J. Hart
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - R. H. Temperton
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - J. N. O'Shea
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - N. H. Rees
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| |
Collapse
|
5
|
Wang T, Geng H, Yu C, Zhang X, Wu N, Wu F, Yu D, Wang L. Electrochemical hydrogenation of soybean oil by filling H
2
in supercritical CO
2. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tong Wang
- School of Food Science Northeast Agricultural University Harbin China
| | - Haoyuan Geng
- School of Food Science Northeast Agricultural University Harbin China
| | - Changhua Yu
- School of Food Science Northeast Agricultural University Harbin China
| | - Xin Zhang
- School of Food Science Northeast Agricultural University Harbin China
| | - Nan Wu
- School of Food Science Northeast Agricultural University Harbin China
| | - Fei Wu
- School of Food Science Northeast Agricultural University Harbin China
| | - Dianyu Yu
- School of Food Science Northeast Agricultural University Harbin China
| | - Liqi Wang
- School of Computer and Information Engineering Harbin University of Commerce Harbin China
| |
Collapse
|