1
|
Vögele M, Köfinger J, Hummer G. Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly. ACS APPLIED BIO MATERIALS 2024; 7:528-534. [PMID: 36070609 PMCID: PMC10880049 DOI: 10.1021/acsabm.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Nanofiltration technology faces the competing challenges of achieving high fluid flux through uniformly narrow pores of a mechanically and chemically stable filter. Supported dense-packed 2D-crystals of single-walled carbon nanotube (CNT) porins with ∼1 nm wide pores could, in principle, meet these challenges. However, such CNT membranes cannot currently be synthesized at high pore density. Here, we use computer simulations to explore lipid-mediated self-assembly as a route toward densely packed CNT membranes, motivated by the analogy to membrane-protein 2D crystallization. In large-scale coarse-grained molecular dynamics (MD) simulations, we find that CNTs in lipid membranes readily self-assemble into large clusters. Lipids trapped between the CNTs lubricate CNT repacking upon collisions of diffusing clusters, thereby facilitating the formation of large ordered structures. Cluster diffusion follows the Saffman-Delbrück law and its generalization by Hughes, Pailthorpe, and White. On longer time scales, we expect the formation of close-packed CNT structures by depletion of the intervening shared annular lipid shell, depending on the relative strength of CNT-CNT and CNT-lipid interactions. Our simulations identify CNT length, diameter, and end functionalization as major factors for the self-assembly of CNT membranes.
Collapse
Affiliation(s)
- Martin Vögele
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Park Y, Hong M, Kim T, Na H, Park S, Kim YJ, Kim J, Choung YH, Kim K. Probing the Ion Transport Properties of Ultrashort Carbon Nanotubes Integrated with Supported Lipid Bilayers via Electrochemical Analysis. J Phys Chem B 2023; 127:6316-6324. [PMID: 37432843 PMCID: PMC10364809 DOI: 10.1021/acs.jpcb.3c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Supported lipid bilayers (SLBs) are commonly used to investigate interactions between cell membranes and their environment. These model platforms can be formed on electrode surfaces and analyzed using electrochemical methods for bioapplications. Carbon nanotube porins (CNTPs) integrated with SLBs have emerged as promising artificial ion channel platforms. In this study, we present the integration and ion transport characterization of CNTPs in in vivo environments. We combine experimental and simulation data obtained from electrochemical analysis to analyze the membrane resistance of the equivalent circuits. Our results show that carrying CNTPs on a gold electrode results in high conductance for monovalent cations (K+ and Na+) and low conductance for divalent cations (Ca2+).
Collapse
Affiliation(s)
- Yunjeong Park
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
- Department
of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Minsung Hong
- Department
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department
of Nuclear Engineering, University of California
at Berkeley, Berkeley, California 94720, United States
| | - Teayeop Kim
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Hyeonseo Na
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Sunho Park
- Department
of Convergence Biosystems Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
- Department
of Rural and Biosystems Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
- Interdisciplinary
Program in IT-Bio Convergence System, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Yeon Ju Kim
- Department
of Otolaryngology, Ajou University School
of Medicine, Suwon 16499, Republic
of Korea
| | - Jangho Kim
- Department
of Convergence Biosystems Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
- Department
of Rural and Biosystems Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
- Interdisciplinary
Program in IT-Bio Convergence System, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Yun-Hoon Choung
- Department
of Otolaryngology, Ajou University School
of Medicine, Suwon 16499, Republic
of Korea
- Department
of Medical Sciences, Ajou University Graduate
School of Medicine, Suwon 16499, Republic
of Korea
| | - Kyunghoon Kim
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| |
Collapse
|
3
|
Abstract
We employed molecular dynamics simulations on the water solvation of conically shaped carbon nanoparticles. We explored the hydrophobic behaviour of the nanoparticles and investigated microscopically the cavitation of water in a conical confinement with different angles. We performed additional molecular dynamics simulations in which the carbon structures do not interact with water as if they were in vacuum. We detected a waving on the surface of the cones that resembles the shape agitations of artificial water channels and biological porins. The surface waves were induced by the pentagonal carbon rings (in an otherwise hexagonal network of carbon rings) concentrated near the apex of the cones. The waves were affected by the curvature gradients on the surface. They were almost undetected for the case of an armchair nanotube. Understanding such nanoscale phenomena is the key to better designed molecular models for membrane systems and nanodevices for energy applications and separation.
Collapse
|