1
|
Enhanced Hydrogen Evolution Activity and Lithium-Ion Storage of Three-Dimensional Porous MoS2 Hybridized with Graphene Aerogel. Catal Letters 2020. [DOI: 10.1007/s10562-020-03255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Zhang M, Deng Y, Yang M, Nakajima H, Yudasaka M, Iijima S, Okazaki T. A Simple Method for Removal of Carbon Nanotubes from Wastewater Using Hypochlorite. Sci Rep 2019; 9:1284. [PMID: 30718788 PMCID: PMC6362128 DOI: 10.1038/s41598-018-38307-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/15/2018] [Indexed: 12/01/2022] Open
Abstract
Carbon nanotubes (CNTs) have been applied in a wide range of fields, such as materials, electronics, energy storages, and biomedicine. With the rapid increase in CNTs industrialization, more and more CNT-containing wastewater is being produced. Since concerns about the toxic effects of CNTs on human health persist, CNT-containing wastewater should not be released into the environment without purification, but no effective methods have been reported. In the present study, we report a simple method to eliminate CNTs from industrial or laboratorial wastewater using sodium hypochlorite. Direct treatment of aqueous dispersions with sodium hypochlorite solution completely degraded CNTs into carbon oxides or carbonates ions. Since hypochlorite is environmentally friendly and frequently used as a disinfectant or bleaching agent in domestic cleaning, this method is practical for purification of CNT-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Minfang Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Yinmei Deng
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mei Yang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hideaki Nakajima
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masako Yudasaka
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan
| | - Sumio Iijima
- Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan
| | - Toshiya Okazaki
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|