1
|
Fu W, Wei C, Xu S, Wang E, Zhang J, Xu Y, Zou J, Wei J, Zuo J. Facile synthesis of nanostrip-structured pseudo-boehmite "nest" for nano-TiO 2/ γ-Al 2O 3construction to remove tetracycline hydrochloride in water. NANOTECHNOLOGY 2023; 34:245401. [PMID: 36898149 DOI: 10.1088/1361-6528/acc33d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
A particular bird's nest-like pseudo-boehmite (PB) composed of cohesive nanostrips was prepared by a novel and facile approach based on the reaction of Al-Ga-In-Sn alloy and water, together with ammonium carbonate. The PB possesses a large specific surface area (465.2 m2g-1), pore volume (1.0 cm3g-1), and pore diameter (8.7 nm). Subsequently, it was utilized as a precursor to form the TiO2/γ-Al2O3nanocomposite for tetracycline hydrochloride removal. The removal efficiency can reach above 90% at TiO2:PB = 1:1.5 under the Sunlight irradiation simulated by a LED lamp. Our results indicate that the nest-like PB is a promising carrier precursor for efficient nanocomposite catalysts.
Collapse
Affiliation(s)
- Wenjing Fu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Cundi Wei
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Shaonan Xu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Enhui Wang
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Jinyi Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - You Xu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Jiyuan Zou
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Jilun Wei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14201, United States of America
| | - Jing Zuo
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| |
Collapse
|
2
|
Cui Y, Guo P, Wang F, Dang P, Wang C, Jing P, Pu Y, Tao X. Self-Doping Based Facet Junctions and Oxygen Vacancies in Ferroelectric Bi 3Ti xNb 2-xO 9 Nanosheets for Boosting Photocatalytic Degradation and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51819-51834. [PMID: 36349934 DOI: 10.1021/acsami.2c12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Constructing facet junction in semiconductor photocatalysts has been demonstrated as an effective method to promote charge-carrier separation and suppress carrier recombination. Herein, we proposed a novel but facile self-doping strategy to regulate the crystal facet exposure ratio in ferroelectric Bi3TixNb2-xO9 single-crystalline nanosheets, thereby optimizing its facet junction effect. Through tuning the atomic ratio of Ti and Nb, the exposure ratio of {001} and {110} crystal planes in Bi3TixNb2-xO9 nanosheets can be delicately modulated, and more {110} facets were exposed with the increase of the Ti/Nb atomic ratio as evidenced by the X-ray diffraction and scanning electron microscopy results. A facet junction between {110} and {001} crystal planes was verified based on the density functional theory calculation and photodeposition experiment results. Photogenerated electrons tend to accumulate in {110}, while holes gathered in {001} crystal planes. Owing to the optimal facet junction effect, the sample of Ti1.05 shows the most efficient charge-carrier separation and transportation compared to Ti0.95 and Ti1.00 as supported by the photoluminescence, surface photovoltage, photoelectrochemistry, and electron paramagnetic resonance (EPR) results. In addition, the oxygen vacancy arising from the inequivalent substitution of Nb5+ by Ti4+ as proved by X-ray photoelectron spectroscopy and EPR results and the enhanced ferroelectricity supported by P-E loops can also assist charge-carrier separation and migration. Benefiting from these properties, Ti1.05 outperformed Ti0.95 and Ti1.00 in the photodegradation of organic dye and antibiotic molecules. Meanwhile, the excellent antibacterial activity of Ti1.05 under visible light was also demonstrated by the Escherichia coli sterilization experiment. This work not only presents a novel pathway to adjust the facet junction but also provides new deep insights into the crystal facet engineering in ferroelectrics as photocatalysts.
Collapse
Affiliation(s)
- Yongfei Cui
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Peng Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Fenghui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Peipei Dang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Cuicui Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Panpan Jing
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Yongping Pu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science &Technology, Xi'an710021, Shaanxi, P. R. China
| | - Xiaoma Tao
- School of Physics and Technology, Guangxi University, Nanning530004, Guangxi, P. R. China
| |
Collapse
|
3
|
Wang J, Sun Y, Liu H, Hou Y, Dai Y, Luo C, Wang X. Preparation of Bi 3Fe 0.5Nb 1.5O 9/g-C 3N 4 heterojunction photocatalysts and applications in the photocatalytic degradation of 2,4-dichlorophenol in environment. NEW J CHEM 2022. [DOI: 10.1039/d2nj01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The energy band relationship and the active substances were studied to determine photocatalyst accords with the Z-type transfer mechanism.
Collapse
Affiliation(s)
- Jingdao Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yanan Hou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|