1
|
Lacerda LHDS, San-Miguel MA. Unraveling the MnMoO 4 polymorphism: a comprehensive DFT investigation of α, β, and ω phases. JOURNAL OF MATERIALS SCIENCE 2022; 57:10179-10196. [PMID: 35634516 PMCID: PMC9125973 DOI: 10.1007/s10853-022-07277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED The MnMoO4 is an environmentally friendly semiconductor material widely employed in technological devices. This material can be obtained on three different polymorphs, and although such phases were reported decades ago, some obscurity over their structure and properties is still perceived. Thus, this work provides a comprehensive DFT investigation of the α, β, and ω phases of MnMoO4, analyzing their crystalline structure, stability, and electronic and magnetic properties. The results show that all phases of MnMoO4 are stable at room conditions connected by pressure application or long-time high-temperature treatment. The MnMoO4 phases are G-type antiferromagnetic with semiconductor bandgap and have enormous potential to develop magnetic, optical, and electronic devices and photocatalytic-based processes. The results also evidence potential antiviral and antibacterial activities of the three MnMoO4 polymorphs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-022-07277-7.
Collapse
|
2
|
Noor S, Sajjad S, Leghari SAK, Flox C, Kallio T, Kauppinen EI, Ahmad S. Electronic transitions of SWCNTs in comparison to GO on Mn 3O 4/TiO 2 nanocomposites for hydrogen energy generation and solar photocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d0nj05120a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conductivity of metal/metal oxide-doped TiO2 nanomaterials is enhanced by the incorporation of carbonaceous materials, e.g. single-walled carbon nanotubes (SWCNTs) and graphene oxide (GO).
Collapse
Affiliation(s)
- Saima Noor
- Faculty of Basic and Applied Sciences
- International Islamic University
- H-10 Islamabad
- Pakistan
- Department of Chemistry and Materials Science
| | - Shamaila Sajjad
- Faculty of Basic and Applied Sciences
- International Islamic University
- H-10 Islamabad
- Pakistan
| | | | - Cristina Flox
- Department of Chemistry and Materials Science
- Aalto University
- Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science
- Aalto University
- Finland
| | | | - Saeed Ahmad
- Department of Applied Physics
- Aalto University
- Finland
| |
Collapse
|
3
|
McMahon AJ, Jarrold CC. Using anion photoelectron spectroscopy of cluster models to gain insights into mechanisms of catalyst-mediated H 2 production from water. Phys Chem Chem Phys 2020; 22:27936-27948. [PMID: 33201956 DOI: 10.1039/d0cp05055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal oxide cluster models of catalyst materials offer a powerful platform for probing the molecular-scale features and interactions that govern catalysis. This perspective gives an overview of studies implementing the combination of anion photoelectron (PE) spectroscopy and density functional theory calculations toward exploring cluster models of metal oxides and metal-oxide supported Pt that catalytically drive the hydrogen evolution reaction (HER) or the water-gas shift reaction. The utility in the combination of these experimental and computational techniques lies in our ability to unambiguously determine electronic and molecular structures, which can then connect to results of reactivity studies. In particular, we focus on the activity of oxygen vacancies modeled by suboxide clusters, the critical mechanistic step of forming proximal metal hydride and hydroxide groups as a prerequisite for H2 production, and the structural features that lead to trapped dihydroxide groups. The pronounced asymmetric oxidation found in heterometallic group 6 oxides and near-neighbor group 5/group 6 results in higher activity toward water, while group 7/group 6 oxides form very specific stoichiometries that suggest facile regeneration. Studies on the trans-periodic combination of cerium oxide and platinum as a model for ceria supported Pt atoms and nanoparticles reveal striking negative charge accumulation by Pt, which, combined with the ionic conductivity of ceria, suggests a mechanism for the exceptionally high activity of this system towards the water-gas shift reaction.
Collapse
Affiliation(s)
- Abbey J McMahon
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | |
Collapse
|
4
|
Mason JL, Gupta AK, McMahon AJ, Folluo CN, Raghavachari K, Jarrold CC. The striking influence of oxophilicity differences in heterometallic Mo–Mn oxide cluster reactions with water. J Chem Phys 2020; 152:054301. [DOI: 10.1063/1.5142398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Ankur K. Gupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Abbey J. McMahon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
5
|
Wen L, Zhang X, Liu J, Li X, Xing C, Lyu X, Cai W, Wang W, Li Y. Cr-Dopant Induced Breaking of Scaling Relations in CoFe Layered Double Hydroxides for Improvement of Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902373. [PMID: 31304683 DOI: 10.1002/smll.201902373] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Monodentate adsorption of oxygen intermediates results in a theoretical overpotential limit of ≈0.35 V for oxygen evolution reaction (OER), which causes the sluggish kinetics of the OER process. In this work, nonprecious chromium dopant is introduced into the self-supported CoFe layered double hydroxides (LDHs) on nickel foam (Cr-CoFe LDHs/NF) via a facile one-step hydrothermal method, which exhibits a preeminent electrocatalytic activity toward the OER with an ultralow overpotential of 238 mV to obtain 10 mA cm-2 and a high stability after cyclic voltammetry for 5000 cycles in alkaline solution (1 m KOH). Density functional theory (DFT) calculations unveil that Cr dopants as new active sites could improve the electron-donation ability of the resultant Cr-CoFe LDHs due to the smaller electronegativity of Cr in comparison with Fe and Co. Therefore, the scaling relation of adsorption energy among four oxygen intermediates is broken and consequently the OER performance is further promoted. This work provides a strategy to develop efficient metal layered double hydroxide OER catalysts.
Collapse
Affiliation(s)
- Lulu Wen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xilin Zhang
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jieyu Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Xinyang Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Changchang Xing
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xianjun Lyu
- Shandong University of Science and Technology, College of Chemical and Environmental Engineering, Qingdao, Shandong, 266510, China
| | - Weiping Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
6
|
Sun B, Yang S, Guo Y, Xue Y, Tian J, Cui H, Song X. Fabrication of molybdenum and tungsten oxide, sulfide, phosphide (MoxW1-xO2/MoxW1-xS2/MoxW1-xP) porous hollow nano-octahedrons from metal-organic frameworks templates as efficient hydrogen evolution reaction electrocatalysts. J Colloid Interface Sci 2019; 547:339-349. [DOI: 10.1016/j.jcis.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
7
|
Wen L, Yu J, Xing C, Liu D, Lyu X, Cai W, Li X. Flexible vanadium-doped Ni 2P nanosheet arrays grown on carbon cloth for an efficient hydrogen evolution reaction. NANOSCALE 2019; 11:4198-4203. [PMID: 30806413 DOI: 10.1039/c8nr10167a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tuning the electronic structure, morphology, and structure of electrocatalysts is of great significance to achieve a highly active and stable hydrogen evolution reaction (HER). Herein, combining hydrothermal and low temperature phosphidation methods, V-doped Ni2P nanosheet arrays grown on carbon cloth (V-Ni2P NSAs/CC) were successfully prepared for the HER. It is found that the prepared V-Ni2P NSAs/CC exhibits preeminent performance for the HER. Specifically, it only requires an overpotential of 85 mV to achieve a current density of 10 mA cm-2 in 1.0 M KOH solution. Moreover, the V-Ni2P NSAs/CC shows superior electrochemical stability, maintaining its HER performance up to 3000 cyclic voltammetry cycles. This work affords a guiding strategy for the synthesis of a high-performance and stable electrocatalyst for the HER.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | | | | | | | | | | | | |
Collapse
|