1
|
Wang Q, Peng R, Wang Y, Zhu S, Yan X, Lei Y, Sun Y, He H, Luo L. Sequential colorimetric sensing of cupric and mercuric ions by regulating the etching process of triangular gold nanoplates. Mikrochim Acta 2020; 187:205. [PMID: 32152683 DOI: 10.1007/s00604-020-4176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 μM for Cu2+ and 0.02-3.0 μM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Ruifeng Peng
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yishan Wang
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Shouzhe Zhu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Youbao Sun
- Shimadzu (China) Co., Ltd., Shanghai, 200052, People's Republic of China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
2
|
Huang Z, Duan B, Li J, Wang M, Yang W. Fabrication of prime number checkers based on colorimetric responses of gold nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj00914k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we demonstrated the fabrication of molecular prime number checkers based on the concentration- and sequence-dependent colorimetric responses of citrate-capped gold nanoparticles (Au NPs) to two simple model chemicals, i.e. cysteine (Cys) and Hg2+ ions.
Collapse
Affiliation(s)
- Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bohui Duan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jinshuo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Min Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|